期刊文献+

一种基于光流法的逆行异常事件检测方法 被引量:7

Method for Opposing Flow Abnormal Event Detection Based on Optical Flow
下载PDF
导出
摘要 机场大厅、公路等公共场合,经常需要行人或车辆单向运动,以保障开放环境的安全性及秩序性。对监控视频中的逆行异常事件进行检测,便于管理人员及时对可疑事件做出处理。提出了一种逆行异常事件的检测算法,它基于图像中特征点的光流场以及空间分布特性对特征点进行聚类,然后通过计算符合逆行条件的特征点数量实现对逆行异常事件的检测。理论分析和实验结果均表明,该方法既能显著降低运算的复杂度,又能明显提高检测的准确率,适用于实时性要求较高的智能视频监控系统。 In many public places, such as airport lobby and high way, pedestrians and vehicles are required to run in one way traffic lane in order to guarantee the order and public security in open environments. It will be very convenient and effective for administers to handle urgent suspicious events if the surveillance system can automatically detect abnormal video events. A novel method for detecting opposing flow abnormal event is proposed, where optical flow and spatial distribution are utilized to cluster feature points in the frame, the number of feature points belonging to opposing flow is calculated to finally determine if there is an abnormal event. The theoretical analysis and experimental results show that the proposed method can dramatically reduce the complexity, and as well improve detection accuracy. It is quite essential for a real-time intelligent surveillance system.
出处 《电视技术》 北大核心 2011年第13期102-105,共4页 Video Engineering
基金 国家973计划项目(2010CB731401) 教育部博士点基金项目(200802481006) 国家自然科学基金项目(60902073)
关键词 异常事件检测 光流场 特征点聚类 逆行 abnormal event detection optical flow feature points clustering opposing flow
  • 相关文献

参考文献4

  • 1HORN B K P, SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence, 1981,17: 185-203.
  • 2LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision[C]//International Joint Conference on Artificial Intelligence (IJCAI-81 ).Vancouver: [s.n.], 1981 : 674-679.
  • 3张玉芳,毛嘉莉,熊忠阳.一种改进的K-means算法[J].计算机应用,2003,23(8):31-33. 被引量:73
  • 4NG R T, HAN Jiawei. Efficient and effective clustering methods for spatial data mining[C]//Proceeding of the 20th VLDB Conference. Santiago, Chile: Institute of Electrical & Electronics Engineers, 1994:144-155.

二级参考文献13

  • 1(加)HanJ KamberM 范明 盂小峰 等译.数据挖掘概念与技术m[M].北京:机械工业出版社,2001.223-262.
  • 2..http://lib, slat. Cmu. Edu/datasets/places. Data,.
  • 3Forgy E. Cluster analysis of multivariate data: Efficiency vs. interpretabillty of classifications[ M]. Biometrics, 1965, 21(3) : 768.
  • 4MacQueen J. Some methods for classlfication and analysis of multivariate observations[ A]. Proceedinss of the Fifth Berkeley Symposium on Mathematical Statistics and Probability[ C]. Volume 1. Le-Cam LM, Neyman N, Ed. University of California Press, 1967.
  • 5Duda RO, Hart PE. Pattern Classification and Scene Analysis[ M].New York: John Wiley and Sons, 1973.
  • 6Selim SZ, Alsultan K. A Simulated Annealing Algorithm for the Clustering Problem[J]. Pattern Recognition, 1991, 24(10): 1003- 1008.
  • 7Fayyad U, Reina C, Bradley PS. Initialization of Iterative Refinement Clustering Algorithms[ R]. Microsoft Research Technical Report MSR-TR-98-38, June 1998.
  • 8Selim SZ, Ismail MA. K-Means-Type Algorithms: A Generalized Convergence Theorem and Charadterization of Local Optimality[ M].IEEE Trans Pattern Analysis and Machine Intelligence, 1984, PA-MI-6(1).
  • 9Kaufman L, Rouseeuw P. Finding Groups in Data: An Introduction to Cluster Analysis[ M]. New York : John Wiley and Sons, 1990.
  • 10Alsabti K, Ranks S, Singh V. An Efficient K-Means Clustering Algorithm[ A]. Proc. First Workshop on High-Performance Data Mining[C], 1997.

共引文献72

同被引文献58

  • 1杨昌勇,刘建伟,曹泉.车辆违章逆行的图像自动检测与识别[J].计算机工程与设计,2005,26(10):2825-2827. 被引量:2
  • 2田广,戚飞虎,朱文佳,毛欣,陈磐君.单目移动拍摄下基于人体部位的行人检测[J].系统仿真学报,2006,18(10):2906-2910. 被引量:10
  • 3张艳玲,刘桂雄,曹东,吴庭万.数学形态学的基本算法及在图像预处理中应用[J].科学技术与工程,2007,7(3):356-359. 被引量:59
  • 4常发亮,刘雪,王华杰.基于均值漂移与卡尔曼滤波的目标跟踪算法[J].计算机工程与应用,2007,43(12):50-52. 被引量:40
  • 5GIK) Lie,GE Pingshu,ZHANG Mingheng,et al. Pedestrian detection forintelligent transportation systems combining AdaHoost algorithm andsupport vector machine [ J ] . Expert Systems with Applications,2012,39(4) :4274-4286.
  • 6朱恝颖,张利,李云廷.基于背读差分法的交通和件矜能检测系统[J].武汉理工大学学报,2011,33(2) :79 -83.
  • 7GAVR1LA D M, ML'NDKR S. Multi — cue pedestrian detection andtracking from a moving vehicle [J]. International Journal of ComputerVisi(m,2007,73( 1):41 -59.
  • 8TUZKI, 0,P0RIKLI F,MEER P. Pedestrian detection via classificationon Riemannian manifolds [ J ]. IEEE Transactions on Pattern Analysisand Machine Intelligence, 2008 ,30( 10) :1713 - 1727.
  • 9WU B, NEVATIA R. Delertion and tracking of multiple, partially oc-cluded humans by Bayesian combination of edgelet based part detectors[J ] . International journal of Computer Vision, 2007 , 75 ( 2 ):247 -266.
  • 10WU B. Detection of multiple partially occluded humans in a single im-age by bayesian combination of edgelet part deteclors[ C]//Proc. IEEEInternational Conference on Computer Vision. [ S. 1. ] : IEEE Press,2005:90-97.

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部