期刊文献+

一种基于智能过滤的Web个性化推荐模型 被引量:3

A Model of the Intelligent Filtering for Web Personalization Recommendation
原文传递
导出
摘要 Web个性化研究的关键技术是推荐系统,其作用是根据用户模型推荐个性化内容,当前推荐技术的研究主要包括四种模式:基于规则过滤、基于内容过滤、基于协作过滤和混合过滤模式。前三种工作模式采用的是传统技术和方法,根据当前推荐系统研究的重点和热点,提出一种Web个性化应用的智能过滤推荐模式。智能过滤推荐模式组合采用以上三种工作模式的优点、避免前三种单一模式的缺点。该方法的突出特点是根据离线学习模型提取的用户偏好特征,实现在线智能推荐。 Recommend system is perform to recommend personalized content for user according to the user model and is the key technology of personalization application, which includes three patterns: rules-based filter system, content-based filter system, collaboration-based filter system and hybrid filter system. The former three recommendation systems use. General techniques and methods. Now the researchers are focusing on the hybrid methods. The hybrid filtering system gathered the advantages of the former three and avoids their shortcomings. It's excellent feature is that it can both offline learning model and online intelligent recommendation.
出处 《图书情报工作》 CSSCI 北大核心 2011年第13期112-115,共4页 Library and Information Service
关键词 Web个性化推荐系统 WEB挖掘 基于规则过滤 基于内容过滤 协作过滤 web personalization recommendation system web mining rule-based filtering content-based filtering collaborative filtering
  • 相关文献

参考文献12

  • 1Mobasher B. Data mining for Web personalization. [ 2010 - 12 - 11 ]. http.//maya, cs. depaul, edu/mobasher/papers/awoT-mobasher. pdf.
  • 2Das R, Turkoglu I. Creating meaningful data from web logs for improving the impressiveness of a website by using path analysis method. Expert Systems with Applications, 2009 (36) :6635 - 6644.
  • 3Zhang F, Chang H. Research and development in web usage mining system - key issues and proposed solutions:A survey. [ 2010 - 12- 11 ]. http://ieeexplore, ieee. org/xpls/abs_all, jsp? tp = & aruamber = 1174531&tag = 1.
  • 4Srivastava J, Cooley R, Deshpande M, et al. Web usage mining: Discovery and applications of usage patterns from web data. Sigkdd Explore, 2000,1 (12) : 12 - 23.
  • 5Apache log files version 2.2. [ 2010 - 12 - 13 ]. http://httpd. apache.org/docs/2.2/logs, html#other.
  • 6Billsus D, Pazzani M. A personal news agent that talks, learns and explains. [2010 - 12 - 11 ]. http://wwwis, win. tue. nl/asum99/billsus, html.
  • 7Han J,Kamber M.数据挖掘概念与技术.范明,孟小峰,译.北京:机械工业出版社,2006.
  • 8Burke R. Hybrid Web recommender systems//Brusilovsky P, Kobsa A, Nejdl W. The Adaptive Web: Methods and Strategies of Web Pemonalization, Lecture Notes in Computer Science. Berlin: Springer - Verlag, 2007:377 -408.
  • 9Ardissono L, Gena C, Torasso P, et al. User modeling and recommendation techniques for personalized electronic program guides// Personalized Digital Television. Targeting Programs to Individual Users. Amsterdam : Kluwer Academic Publishers, 2004:3 - 26.
  • 10Mobasher B, Dai Honghua, Luo Tao, et al. Integrating Web usage and content mining for more effective personalization. [2010 - 12 - 11 ]. http ://www. springerlink, com/content/Tlhdxjkwmavpbpdaf.

共引文献1

同被引文献18

  • 1陈晓美,关欣.手机图书馆在信息传播中的价值[J].情报科学,2006,24(11):1687-1690. 被引量:41
  • 2Sharon Allen, Evan Terry. Beginning Relational Data Modeling (Second Edition) [ M ].New York : Apress, 2005.
  • 3Reingruber, M., W. Gregory. The Data Modeling Handbook[M].New York: Wiley, 1994.
  • 4Alan Chmura, J. Mark Heumann. Logical data modeling- What it is and How to do it[ M ].New York : Springer, 2005 : 35-55.
  • 5R.Agrawal, R. Srikant.Fast Algorithms for Mining Association Rules in Large Databases[ C ].The 20th Intematio nal Conference on Very Large Data Bases,1994:478- 499.
  • 6Bing Liu,Wynne Hsu,Yiming Ma.Integrating Classification and Association Rule Mining [ C ]. the Fourth International Conference on Knowledge Discovery and Data Mining, 1998:80-86.
  • 7Ross Quinlan. C4.5 : Programs for Machine Learning[ M ]. San Mateo : Morgan Kaufmann Publishers, 1993.
  • 8D. Fisher.Knowledge acquisition via incremental conceptual clustering [J].Machine Learning, 1987,2 (2) : 139- 172.
  • 9J.H.Gennari,P.Langley,D.Fisher.Models of incremental concept formation [ J ].Artificial Intelligence, 1990, (40) : 11-61.
  • 10Trujillo M, Millan M, Ortiz E. A Recommender System Based on Multi - Features I C] . In= Proceedings of Computational Science and Its Applications - ICCSA 2007. Kuala Lumpur: Springer, 200? : 370 - 382.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部