摘要
Web个性化研究的关键技术是推荐系统,其作用是根据用户模型推荐个性化内容,当前推荐技术的研究主要包括四种模式:基于规则过滤、基于内容过滤、基于协作过滤和混合过滤模式。前三种工作模式采用的是传统技术和方法,根据当前推荐系统研究的重点和热点,提出一种Web个性化应用的智能过滤推荐模式。智能过滤推荐模式组合采用以上三种工作模式的优点、避免前三种单一模式的缺点。该方法的突出特点是根据离线学习模型提取的用户偏好特征,实现在线智能推荐。
Recommend system is perform to recommend personalized content for user according to the user model and is the key technology of personalization application, which includes three patterns: rules-based filter system, content-based filter system, collaboration-based filter system and hybrid filter system. The former three recommendation systems use. General techniques and methods. Now the researchers are focusing on the hybrid methods. The hybrid filtering system gathered the advantages of the former three and avoids their shortcomings. It's excellent feature is that it can both offline learning model and online intelligent recommendation.
出处
《图书情报工作》
CSSCI
北大核心
2011年第13期112-115,共4页
Library and Information Service
关键词
Web个性化推荐系统
WEB挖掘
基于规则过滤
基于内容过滤
协作过滤
web personalization recommendation system web mining rule-based filtering content-based filtering collaborative filtering