期刊文献+

基于基础结构法的柔顺机构动力学拓扑优化 被引量:2

DYNAMIC TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISMS USING THE GROUND STRUCTURE APPROACH
下载PDF
导出
摘要 提出一种新的在简谐激励作用下,基于基础结构法的柔顺机构动力学拓扑优化方法。框架单元能够包含弯曲模式,因此采用它的集合表示设计域。以动力放大系数最大化与应变能的最小化加权函数为目标,满足在动态条件下柔顺机构具有足够柔度和刚度;并且规一化目标函数避免不同性质目标函数的量级差异。目标函数的敏度采用伴随矩阵法求解,用移动近似算法对优化问题进行迭代求解。通过数值算例对不同外激励频率和不同输出刚度的拓扑优化结构进行分析讨论。结果表明,该方法在柔顺机构动力学拓扑优化设计中是正确的和有效的。 A new dynamic topology optimization method of compliant mechanisms using the ground structure approach under harmonic excitation is presented.Frame elements are chosen to represent the design domain because they are capable of capturing the bending modes.The multi-objective function is developed by the maximum dynamic magnification factor and the minimum strain energy to design a mechanism which meets both stiffness and flexibility requirements under harmonic excitation,respectively.The objective function is normalized to eliminate magnitude difference of the objectives.The sensitivities of the objective functions are computed by the adjoint method,the optimization problem is solved using the method of moving asymptotes(MMA).Some numerical examples with different driving frequency and different output spring stiffness are presented to illustrate the effect of driving frequency and damping factor.The results are shown to demonstrate the validity to the proposed method.
出处 《机械强度》 CAS CSCD 北大核心 2011年第3期353-357,共5页 Journal of Mechanical Strength
基金 国家杰出青年科学基金(50825504) 国家自然科学基金(50775073)资助项目~~
关键词 柔顺机构 拓扑优化 简谐响应 基础结构法 多目标优化 Compliant mechanisms Topology optimization Harmonic response Ground structure approach Multi-objective optimization
  • 相关文献

参考文献15

  • 1Kota S, Joo J, Zhe L, et al. Design of compliant mechanisms: Application to MEMS [ J ]. Analog Integrated Circuits and Signal Processing, 2001, 29(1-2): 7-15.
  • 2张宪民.柔顺机构拓扑优化设计[J].机械工程学报,2003,39(11):47-51. 被引量:58
  • 3徐斌,管欣,荣见华.谐和激励下的连续体结构拓扑优化[J].西北工业大学学报,2004,22(3):313-316. 被引量:18
  • 4朱灯林,王安麟.基于动态柔度的硬盘驱动臂的拓扑设计[J].机械强度,2007,29(2):269-273. 被引量:4
  • 5Nishiwaki S, Saitou K, Min S, et al. Topological design considering flexibility under periodic loads[J]. Structural and Muhidisciplinary Optimization, 2000, 19(1): 4-16.
  • 6Du H, Lau G K, Lira M K, et al. Topological optimization of mechanical amplifiers for piezoelectric actuators under dynqamic motion [ J ]. Smart Material and Structures, 2000, 9(6): 788-800.
  • 7Lau G K, Du H, Lim M K, et al. Systematic design of displacement-amplifying mechanism for piezoelectric stacked actuators using topology optimization[ J]. Journal of Intelligent Material Systems and Structures, 2000, 11(9): 583-591.
  • 8Maddisetty H, Frecker M. Dynamic topology optimization of compliant mechmlisms and piezoceramic actuators [ J ]. Journal of Mechanical Design, 2004, 126(6): 975-983.
  • 9Abdalla M, Frecker M, Gurdal Z, et al. Design of a piezoelectric actuator and compliant mechanism combination for maximum energy efficiency [J]. Smart Material and Structures, 2005, 14(6) : 1421-1430.
  • 10Shuib S, Ridzwan M I Z, Kadarman A H. Methodology of compliant mechanisms and ils current developments in applications: a review[ J]. American Journal of Applied Sciences, 2007, 4(3) : 160-167.

二级参考文献59

  • 1罗震,陈立平,黄玉盈,张云清.连续体结构的拓扑优化设计[J].力学进展,2004,34(4):463-476. 被引量:154
  • 2杜海珍,荣见华,傅建林,杨振兴.基于应变能的双方向结构渐进优化方法[J].机械强度,2005,27(1):72-77. 被引量:18
  • 3罗震,陈立平,张云清,黄玉盈.多工况下连续体结构的多刚度拓扑优化设计和二重敏度过滤技术[J].固体力学学报,2005,26(1):29-36. 被引量:36
  • 4[1]Bendsoe M P, Kikuchi. Generating optimal topologies in structural design using a homogenization method. Computer methods in Applied mechanics and Engineering, 1988, 71:197~224
  • 5[2]Nishiwaki S, Frecker M I, Min S, et al. Topology optimization of compliant mechanisms using homogenization method. International Journal for Numerical Method Engineering, 1998, 42:535~559
  • 6[3]Yin L, Ananthasuresh G K. A novel formulation for the design of distributed compliant mechanisms. In:Proceedings of the 2002 ASME Design Engineering Technical Conferences, 2002, DETC2002/MECH-34213
  • 7[4]Nishiwaki S, Min S, Yoo J, et al. Optimal structural design considering flexibility. International Journal for Numerical Method Engineering, 2001, 190:4 457~4 504
  • 8[5]Frecker M I, Ananthasuresh G K, Nishiwaki S, et al. Topological synthesis of compliant mechanisms using multi-criteria optimization. Transactions of the ASME, Journal of Mechanical Design, 1997, 119(2):238~245
  • 9[6]Frecker M I, Kota S, Kikuchi N. Use of penalty function in topological synthesis and optimization of strain energy density of compliant mechanisms. In:Proceedings of the 1997 ASME Design Engineering Technical Conferences, 1997, DETC97/ DAC-3760
  • 10[7]Frecker M I, Kikuchi N, Kota S. Topology optimization of compliant mechanisms with multiple outputs. Structural Optimization, 1999, 17:269~278

共引文献87

同被引文献12

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部