期刊文献+

界面特性对非贯穿连续碳纳米筒体增强复合材料力学性能的影响 被引量:3

EFFECT OF INTERFACIAL CHARACTERISTIC ON EFFECTIVE MECHANICAL PROPERTIES OF COMPOSITES REINFORCED BY THE NONPENERATIVE CONTINUUM CARBON NANO-TUBE
下载PDF
导出
摘要 首先用分子结构力学方法导出单壁碳纳米管的几何参数,用有限元法(Ansys)分别计算扶手椅型和锯齿型单壁碳纳米管(single-walled carbon nanotubes,SWCNTs)的弹性模量,并分析它们与碳纳米管半径和长度的关系;以有效弹性性能较为稳定的扶手椅型单壁碳纳米管为例,利用能量等效原理证明用连续圆筒代替原子结构碳纳米管的可行性;进而建立包含界面相的三维非贯穿连续碳纳米管圆筒增强复合材料实体模型,用纳微观均质化法计算复合材料整体有效弹性模量,分别讨论强界面结合、弱界面结合情况下界面层的长厚比、体积比、弹性模量等的变化对有效弹性模量的影响,应用含空洞、筒体、界面相、基体四相介质的经典Halpin-Tsai、Mori-Tanaka方法验证纳微观均质化计算方法的有效性。同时计算强弱界面情况沿碳纳米管长度方向碳纳米管及界面层的正应力和剪应力分布规律,阐述界面结合的强弱对复合材料承载能力的影响。 The geometry parameters are determined by the molecular structural mechanics,so the relationship between effective elastic modulus and the radius and the length of nano-tube can be analyzed for armchair and zigzag single-wall nano-tube(SWNT).The energy method is applied to prove that it is effective to instead the armchair SWNT by using the continuum hollow cylinder model.The effective elastic moduli of three-dimensional composites reinforced by the nonpenerative continuum hollow cylinder with interphase region are calculated by using the nano-microscopic homogenization method,and the effect of length-thickness ratio,volume fraction and elastic modulus of the strong and weak interfaces on effective elastic moduli are discussed,and the results are compared well with the classical Halpin-Tsai and Mori-Tanaka method with four phases medium(hollow,continuum tube,interface and matrix).The normal stresses and shear stresses along the nano-tube are calculated to describe the influence of strong and weak interface on the loading capability for nano-composites.
出处 《机械强度》 CAS CSCD 北大核心 2011年第3期396-402,共7页 Journal of Mechanical Strength
基金 国家自然科学基金(10772047 A020206) 教育部留学回国人员基金(890) 佛山市科技专项基金(2007055B)资助项目~~
关键词 单壁碳纳米管 连续碳纳米筒体 强弱界面相 四相介质 Single-walled carbon nano-tube Continuum hollow cylinder model Strong and weak interface Media with four phase
  • 相关文献

参考文献19

  • 1lijima S. Helical microtubules of graphitie carbon [ J]. Nature, 1991, 354(6348) : 56-58.
  • 2Thostenson E T, Ren Z, Chou TW. Advances in the science and technology of carbon nano-tubes and their composites: A review[J]. Compos Sci Technol, 2001, 61 ( 13 ) : 1899-1912.
  • 3Liu Y J, Chen X L. Evaluations of effective material properties of carbon nanotube-hased composites using a nano scale representative volume element[J]. Mechanics of Materials, 2003, 35: 69-81.
  • 4Chen X L, I,iu Y J. Square representative volume elements for evaluating the effective material properties of carbon nano-lube-based composites [J].Computational Materials Science, 2004, 29 : 1-11.
  • 5Fisher F T, Bradshaw R D, Bfinson L C. Fiber waviness in nanotube-reinforeed polymer composites-1: Modulus predictions using effective nanotube properties [J]. Composites Science and Technology. 2003, 63: 1689-1703.
  • 6Gao X L, Li K. A shear-lag model for carbon nano-tube-reitfforced polymer composites[ J ]. International Journal of Solids and Structures, 2005, 42: 1649-1667.
  • 7Odegard G M, Gatesb T S, Wisea K E, et al. Constitutive modeling of nano-tube-reinforced Polymer composites [ J]. Composites Science and Technology, 2003, 63: 1671-1687.
  • 8Ding W, Einat A, Fisher F T, et al. Direet observation of polymer sheathing in carbon nanotube-polyearbonate composites [ J]. Nano Letters, 2003, 3: 1593-1597.
  • 9罗海安,陈炳进,刘冲.界面相性态对纤维增强复合材料内应力传递的影响[J].复合材料学报,1996,13(4):123-127. 被引量:6
  • 10雷振坤,仇巍,李秋,亢一澜,潘学民.碳纳米管聚合物复合材料的力学性质[J].高分子材料科学与工程,2008,24(12):134-136. 被引量:3

二级参考文献44

  • 1杨应奎,周兴平,毛联波,解孝林,Mai Yiu-Wing.碳纳米管在聚合物基体中的分散与有序排列研究——(Ⅰ)碳纳米管在聚合物基体中的分散[J].高分子材料科学与工程,2005,21(6):45-49. 被引量:31
  • 2IUIMA S. Nature, 1991, 354(6348): 56-58.
  • 3RICHARD A V, WAGNER H D. Materials Today, 2004, 7(11): 32-37.
  • 4ANDREWS R; WEISENBERGER M C. Current Opinion in Solid State and Materials Science, 2004, 8( 1 ) : 31-37.
  • 5http://www. seasurmano. com.
  • 6WAGNER H D, RICHARD A V. Materials Today, 2004, 7(11): 38-42.
  • 7DESAI A V, HAQUE M A. Thin-Walled Structures, 2005, 43(11). 1787-1803.
  • 8WAGNER H D. Chem. Phys. Lett., 2002, 361(1-2): 57-61.
  • 9QIAN D, DICKEY E C, ANDREWS R, et al. Appl. Phys. Lett., 2000, 76(20): 2868-70.
  • 10ISLAM M F, ROJAS E, BERGEY D M, et al. Nano Lett., 2003, 3(2): 269-273.

共引文献33

同被引文献29

  • 1王欣,薛亚鹏,王晶,李青.大型风机叶片新材料和新技术的发展[J].玻璃钢/复合材料,2011(3):55-59. 被引量:19
  • 2曲艳双,张福华,陈曰东.碳纳米管/碳纤维混杂多尺度增强体研究现状[J].玻璃钢/复合材料,2012(3):85-89. 被引量:8
  • 3刘玲,黄争鸣,董国华,袁国青,何创龙,韩晓建.层间环氧纳米纤维薄膜对层合板力学性能的影响[J].复合材料学报,2006,23(3):15-19. 被引量:13
  • 4宋广兴,齐乐华,李贺军.均匀化方法在C/C复合材料中的应用研究[J].科学技术与工程,2007,7(13):3081-3083. 被引量:7
  • 5Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58.
  • 6Chen X L, Liu Y J. Square representative volume elements for evaluating the effective material pro- perties of carbon nano-tube-based composites[J].Computational Materials Science, 2004, 29: 1-11.
  • 7Fisher F T, Bradshaw R D, Brinson L C. Fiber waviness in nanotube-reinforced polymer compos- ites-I: modulus predictions using effective nanotubeproperties[J]. Composites Science and Technology, 2003, 63:1 689-1 703.
  • 8Gao X L, Li K. A shear-lag model for carbon nanotubereinforced polymer composites [J]. International Journal of Solids and Structures, 2005 , 42 : 1649-1667.
  • 9Odegard G M, Gatesb T S, Wisea K E, et al. Constitutive modeling of nano-tube-reinforced polymercomposites[J]. Composites Science and Technology, 2003, 63: 1 671-1 687.
  • 10Luo D M, Wang W X, Takao Y. Application of homogenization method on the evaluation and analysis of the effective stiffness for noncontinuous car-bon nanotube/polymer composites[J]. Polymer Composites, 2007, 28(5): 688-695.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部