期刊文献+

一类无搅拌Chemostat模型平衡态正解存在性与数值模拟 被引量:2

Existences and Numerical Simulation of Positive Solution for a Class of Unstirred Chemostat Model
下载PDF
导出
摘要 讨论一类含有Beddington-DeAngelis反应功能函数的Chemostat非单链生态模型平衡态正解的存在性,利用特征值比较原理得到正解存在的必要条件。利用度理论、锥映射不动点指数、微分算子的谱半径理论得到正解存在的充分条件。应用MATLAB软件进行数值模拟,验证了正解的存在性。 The coexistence of the steady-state solutions of an unstirred multiple food chain Chemostat model with Beddington-DeAngelis functional response is discussed.The necessary condition is given by comparison theorem of eigenvalue.By using degree theory,index of fixed point of map in cone,and spectral radius of differentiation operator theory,a sufficient condition is obtained for the existence of steady state positive solution.The coexistence is verified by numerical simulation with MATLAB software.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期11-16,共6页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(10971124) 宝鸡文理学院重点资助项目(Zk10116 Zk0691)
关键词 CHEMOSTAT 特征值比较原理 不动点指数 数值模拟 Chemostat comparison theorem of eigenvalue index of fixed point numerical simulation
  • 相关文献

参考文献11

  • 1BUTLER G J, WOLKOWICZ G S K. Predator-mediated competition in the Chemostat [J]. J Math Biol, 1986, 24 : 167 - 191.
  • 2BEDDINGTON J R. Mutual interference between para- sites or predators and its effect on searching efficiency [J]. Animal Ecol, 1975, 44:331 -340.
  • 3RUXTON G, GURNEY W S C, DEROOS A. Interfer- ence and generation cycles [ J]. Theoret Population Biol, 1992, 42 : 235 - 253.
  • 4CANTRELL R S, CONSER C. On the dynamics of pred- ator-prey models with the Beddington- DeAnglis functional response [ J]. J Math Anal Appl, 2001, 257:206 - 222.
  • 5CANTRELL R S, CONSER C. Practical persistence in ecological models via comparision methods [ J]. Proc Roy Soc Edinburgh Sect, 1996, 126(A) : 247 -272.
  • 6CANTRELL R S, CONSER diffusive food chain models C. Practical persistence in [ J ]. Nat Res Modelling,1998,11:21 -34.
  • 7ZHENG S N, LIU J. Coexistence solutions for a reaction- diffusion system of un-stirred Chemostat model [ J]. Appl Math Comp, 2003, 145 : 579 - 590.
  • 8DANCER E N. On positive solutions of some pairs of dif- ferential equations [ J]. Trans Am Math Soc, 1984, 284 : 729 - 743.
  • 9DANCER E N. Positive solutions for a three-species competition system with diffusion-1 general existence results [ J]. Nonlinear Anal, 1995, 254:337 - 357.
  • 10王艳娥,吴建华.一类Chemostat模型正平衡解的存在性和稳定性[J].陕西师范大学学报(自然科学版),2006,34(2):9-12. 被引量:2

二级参考文献10

  • 1Smith H L,Waltman P.The theory of the chemostat:dynamics of microbial competition[M].London:Cambridge University Press,1995.
  • 2陈兰荪,陈健.非线性动力系统[M].北京:科学出版社,1993.
  • 3Hsu S B,Waltman P.On a system of reaction-diffusion equations arising from competition in an unstirredchemostat[J].SIAM Journal on Applied Mathematics,1993,53:1026-1044.
  • 4Wu J H.Global bifurcation of coexistence state for the competition model in the chemostat[J].Nonlinear Analysis,2000,39:817-835.
  • 5Wu J H,Nie H,Wolkowicz G S K.A mathematical model of competition for two essential resources in the unstirredchemostat[J].SIAM Journal on Applied Mathematics,2004,65:209-229.
  • 6Wu J H,Wolkowicz G S K.A system of resource-based growth models with two resources in the unstirred chemostat[J].Journal of Differential Equations,2001,172:300-332.
  • 7Cantrell R S,Cosner C.On the dynamics of predator-prey models with the Beddington-DeAngelis functionalresponse[J].Journal of Mathematical Analysis and Applications,2001,257:206-222.
  • 8Cantrell R S,Cosner C.Practical persistence in ecological models via comparison methods[J].Proceedings of Royal Society of Edinburgh(A),1996,126:247-272.
  • 9Cantrell R S,Cosner C.Practical persistence in diffusive food chain models[J].Natural Research of Modeling,1998,11:21-34.
  • 10Smoller J.Shock waves and reaction-diffusion equations[M].New York:Springer-Verlag,1983.

共引文献1

同被引文献17

  • 1NTONIFOR N N, PQRR M C, EWU KEM J A Ewunkem. Seasonal abundance and distribution of the huntsman spider, Heteropoda venatoria ( Sparassidae : Araneae) in banana ago-ecosystems in Cameroon [ J]. Journal of Entomology, 2012, 9 : 79 - 88.
  • 2VENKATESHALU, HANUMANTHRAYA L, MARADDI G. Impact of different rice agro-eeosystem on spider popu- lation dynamics [ J ]. Environment and Ecology, 2009, 27(3A) : 1231 - 1236.
  • 3VENTURINO E, ISAIA M, BONA F, et al. Modeling the spiders ballooning effect on the vineyard ecology [ J ]. Mathematical Modeling of Natural Phenomena, 2006, 1 (1): 137-159.
  • 4CHATTERJEE S, ISAIA M, VENTURINO E. Effects of spiders predational delays in intensive agroeeosystems [ J ]. Nonlinear Analysis: Real World Applications, 2009, 10:3045 - 3058.
  • 5SEN M, BANERJEE M, VENTURINO E. A model for biological control in agriculture [ J ]. Mathematics and Computers in Simulation, 2013, 87( 1 ) : 30 -44.
  • 6WEI F. Coexistence, stability, and limiting behavior in a one-predator-two-prey model [ J]. Journal of mathematical analysis and applications, 1993, 179 (2) : 592 - 609.
  • 7DANCER E N, DU Y H. Positive solutions for a three- species competition system with diffusion-I. General exist- ence results [ J ]. Nonlinear Analysis Theory Methods & Applications, 1995, 24(3) : 337 - 357.
  • 8DANCER E N, DU Y H. Positive solutions for a three- species competition system with diffusion-II. The case of equal birth rates [ J ]. Nonlinear Analysis Theory Meth- ods & Applications, 1995, 24(3) : 359 -373.
  • 9DU Y H, LOU Y. Some uniqueness and exact multiplic- ity results for a predator-prey model [ J ]. Transactions of the American Mathematical Society, 1997, 349 (6): 2443 - 2475.
  • 10WANG L J, JIANG H L, LI Y. Positive steady state so- lutions of a plant-pollinator model with diffusion [ J ]. Discrete and Continuous Dynamical Systems-Series B, 2015, 20 : 1805 - 1819.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部