期刊文献+

基于BP神经网络响应面的BLISS研究及应用 被引量:1

Research and application of BLISS based on BP neural network response surface
下载PDF
导出
摘要 在标准BLISS方法基础上,依据神经网络的全局映射性,提出了基于BP神经网络建立学科层优化目标函数与系统变量之间的响应面近似模型,并以绝对和相对形式描述的误差函数替代了传统BP算法中单一的绝对形式描述的误差函数。选用样本点在参数空间分布均匀程度更高的试验设计方法——CVT(Centroidal Voronoi Tessellations)试验设计方法来产生训练样本和测试样本,从理论上保证了近似模型的精度。最后利用多属性决策法从算法实施的难易度、优化结果准确性、系统级计算量、算法鲁棒性及收敛性5个方面来评估多学科可行方法(MDF)、改进二级系统合成一体化优化方法(BLISS)的综合性能,定量说明改进BLISS方法更加适合YM160锚杆钻机动力头优化设计。 Based on standard Bi-Level Integrated System Synthesis(BLISS),according to global mapping of neural networks,the response surface approximation model between subject layer optimization objective function and system variables was proposed based on BP neural network,and the error function described in single absolute form in traditional BP algorithm was replaced by that described in absolute and relative forms.The Design Of Experiment(DOE)-Centroidal Voronoi Tessellations(CVT) is selected to generate training samples and test samples of neural network,in which uniform distribution of sample points in parameter space is high,ensuring the accuracy of approximation model in theory.Finally,the multi attribute decision making algorithm was utilized to evaluate comprehensive performance of Multi Disciplinary Feasible(MDF) method and BLISS from five aspects: difficulty of algorithm implementation,the accuracy of optimization results,system level computation,algorithm robustness and the convergence.The result quantitatively indicates that the improved BLISS method is much more suitable for the optimization design of YM160 roofbolter power head.
出处 《机械设计》 CSCD 北大核心 2011年第6期19-25,共7页 Journal of Machine Design
基金 陕西省自然科学基金资助项目(2007E218) 陕西省教育厅自然科学专项资助项目(09JK559)
关键词 BP神经网络 响应面 近似模型 BLISS 多属性决策 锚杆钻机 BP neural network response surface approximation model BLISS multi attribute decision making roofbolter
  • 相关文献

参考文献7

  • 1Bailing R J,Sobieszczanski-Sobieski J. Optimization of coupled systems : A critical overview of approaches [ J ]. AIAA Jour-nal, 1996, 34(1) : 6-7.
  • 2Sobieszczanski-Sobieski J, Jeremy S Agte, Robert R Sandusky, et al. Bi-level integrated system synthesis (BLISS) [R]. Virginia: NASA, 1998.
  • 3赵敏,操安喜,崔维成.多学科设计优化方法的比较[J].中国造船,2008,49(3):68-78. 被引量:11
  • 4Esposite A, Marinaro M. Approximation of continuous and discontinuous mappings by a growing neural RBF-based algorithm[ J ]. Neural Networks, 2000, 6 ( 13 ) : 651 - 665.
  • 5陆金桂,余俊,王浩,陈新度,周济,肖世德.基于人工神经网络的结构近似分析方法的研究[J].中国科学(A辑),1994,24(6):653-658. 被引量:46
  • 6RomeroV, Burkardt J, Gunzburger M, et al. Initial application and evaluation of a promising new samplingmcthod for response surface generation: centroidal Voronoi tessellation, AIAA 2003 - 2008 [ R ]. Norfolk : American Institute of Aeronautics and Astronautics, 2003.
  • 7RomeroV, Burkardt J, gunzburger M, et al. Comparson ofpure and "latinized" centroidal Voronoi tessellation againstvrious other statistical samplingmethods [ J ]. Reliability Engineerinand System Safety, 2006, 91 (10 /11 ): 1266 - 1280.

二级参考文献22

  • 1郭小川,邓二年.美国海军水面舰船的多学科设计优化(二)[J].中外船舶科技,2004(2):1-6. 被引量:4
  • 2KORTE J J, WESTON R P and ZANG T A. Multidisciplinary optimization methods for preliminary design[A]. AGARD Interpanel (FDP+PEP) Symposium "Future Aerospace Technology in the Service of the Alliance"[C], Paris, France, April 1997.
  • 3NEU W L, MASON W H, NI S, LIN Z, DASGUPTA A, CHEN Y. A multidisciplinary design optimization scheme for containerships[R], AIAA-2000-4791.
  • 4BELEGUNDU A D, HALBERG E, YUKISH M A, SIMPSON T W. Attribute-based multidisciplinary optimization of undersea vehicles[R], AIAA-2000-4865.
  • 5HULME K F, BLOEBAUM C L. A Comparison of solution strategies for simulation based on multidisciplinary design optimization[R], AIAA-1998-4977.
  • 6ADELMAN H M, MANTAY W R. Integrated multidisciplinary design optimization of rotorcraft[J]. Journal of Aircraft, 1991, 28(1): 22-28.
  • 7LIVNE E, SCHMIT L A, FRIEDMANN P P. Integrated structure/control/aerodynamic synthesis of activety controlled composite wings[J]. Journal of Aircraft, 1993, 30(3):387-394.
  • 8KROO I M, ALYUS S, BRAUN R D, GAGE P, SOBIESKI I, Multidisciplinary optimization methods for aircraft preliminary design[R]. AIAA-1994-4325-CP.
  • 9BRAUN R D, GAGE P, KROO I M. Implementation and performance issues in collaborative optimization[R], AIAA-1996-4017.
  • 10SOBIESKI I P. Collaborative Optimization Using Response Surface Estimation[D]. Department of Aeronautics and Astronautics, Stanford University, 1998.

共引文献55

同被引文献19

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部