期刊文献+

一种改进的贝叶斯分类器剪接位点预测 被引量:1

Predicting Splice Site by Improved Bayesian Classifier
下载PDF
导出
摘要 虽然现有的DNA剪接位点辨识算法取得很高的辨识精度,但是大多数方法计算量很大。朴素贝叶斯分类器是一种简单而高效的分类器,但是它的属性独立性假设使其无法表示现实世界属性之间的依赖关系,影响了它的分类性能。将朴素贝叶斯分类器进行改进,推导出决策属性和各条件属性对数值间存在线性关系,并用最小二乘法求出这种线性关系系数,设计出一种新的贝叶斯分类器。将改进的贝叶斯分类器应用于DNA序列剪接位点的辨识中。仿真结果表明,本算法计算时间和测试样本的数量成线性关系,辨识精度较朴素贝叶斯分类器有明显提高,同时高于现有辨识算法。 Due to the enormous amount of DNA sequences to be processed,the computational speed is an important issue to be considered.Although relatively high accuracy has been achieved by existing methods,most of these prediction methods are computationally intensive.Na?ve bayesian classifier is a simple and efficient classifier.But the attribute independence assumption can not represent the dependency relationship between attributes in the real word,and the classification performance may be affected to some extent.The improvement of the na?ve Bayesian was made.The linear relationship between condition attributes and decision attribute was derived and the relationship coefficients was determined by least square method.So a new bayesian classifier was designed.The proposed method was applied to the recognition of splice sites in DNA sequences.The simulation results show the performance is notably improved compared with the na?ve bayesian classifier and the existing discovery tools,while the speed of the proposed method is significantly faster.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第7期1429-1432,共4页 Journal of System Simulation
基金 国家自然科学基金(60671061) 校博士启动基金项目7254(沈阳化工大学) 沈阳市科技项目应用基础研究计划(1081236-1-00) 辽宁省教育厅科研项目计划(L2010438)
关键词 剪接位点 朴素贝叶斯分类器 最小二乘法 线性关系 splice site naive bayesian classifier least square linear relationship
  • 相关文献

参考文献9

  • 1马宝山,朱义胜.用于基因预测的自适应滤波器的仿真研究[J].系统仿真学报,2007,19(24):5620-5623. 被引量:4
  • 2闻芳,卢欣,孙之荣,李衍达.基于支持向量机(SVM)的剪接位点识别[J].生物物理学报,1999,15(4):733-739. 被引量:19
  • 3Claverie J-M,Sauvaget I,Bougueleret L.K-tuple frequency analysis:from intron/exon discrimination to t-cell epitope mapping[].Methods in Enzymology.1990
  • 4Yin M,Wang J.GeneScout:a data mining system for predicting vertebrate genes in genomic DNA sequences[].Information Sciences:an International Journal.2004
  • 5A consortium of the Drosophila Genome Center.The Berkeley Drosophila Genome Project (BDGP). http://www.fruitfly.org/seq_tools/datasets/Human . 2008
  • 6Y Zhang,C H Chu,Y Chen,H Zha,X Ji.Splice site prediction using support vector machines with a Bayes kernel[].Expert Systems With Applications.2006
  • 7Universita del Sannio.Homo sapiens splice sites dataset. http://www.sci.unisannio.it/docenti/rampone . 2007
  • 8MARASHI S A,GOODARZI H,SADEGHI M,et al.Importance ofRNA secondary structure information for yeast donor and acceptorsplice site predictions by neural networks[].Computational Biologyand Chemistry.2006
  • 9Stockwell D.R.B.LBS: Bayesian learning system for rapid expert system development[].Expert Systems With Applications.1993

二级参考文献13

  • 1孙键,徐军,凌伦奖,沈如群,陈润生.用神经网络法预测mRNA的剪接位点[J].生物物理学报,1993,9(1):127-131. 被引量:7
  • 2郑毅,丁达夫.果蝇内含子3'剪接位点的选择机制[J].生物物理学报,1994,10(3):459-464. 被引量:6
  • 3骆嘉伟,李仁发,张白妮.基于多维伪F统计量的基因表达动态聚类分析方法研究[J].系统仿真学报,2006,18(3):586-589. 被引量:11
  • 4罗亮,史晓红,许进.LVQ神经网络方法预测蛋白质结构中的二硫键[J].系统仿真学报,2007,19(9):2077-2079. 被引量:5
  • 5D Anastassiou. Genomic signal processing [J]. IEEE Signal Processing Magazine (S1053-5888), 2001, 18(7): 8-20.
  • 6P P Vaidyanathan. Genomics and proteomics a signal processor's tour[J]. IEEE circuits and systems magazine (S 1531-636X), 2004, 4(4): 6-29.
  • 7B Widrow. Stationary and nonstationary learning characteristics of the LMS adaptive filter [C]//Proc. IEEE. USA: IEEE Publisher, 1976: 1151-1162.
  • 8E Eleftheriou, D D Falconer. Tracking properties and steady-state performance of RLS adaptive filter algorithms [J]. IEEE Transactions on Signal Processing (S1053-587X), 1986, 34(5): 1097-1110.
  • 9E N Tfifonov, J L Sussman. The pitch of chromatin DNA is reflected its nucleotide sequence [C]//Proc. of the Nat. Acad. Sci., USA. USA: the Nat. Acad. Sci., USA, 1980, 77: 3816-3820.
  • 10E Ambikairajah, J Epps, M Akhtar. Gene and exon prediction using time domain algorithms [C]//Proceedings of the Eighth International Symposium on Signal Processing and Its Applications. Australia: IEEE Publisher, 2005, 1: 199-202.

共引文献21

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部