期刊文献+

多类有重叠问题的扩张矩阵算法 被引量:1

An Extension Matrix Algorithm for Multi class Problem with Overlay Area
下载PDF
导出
摘要 示例学习是从某一概念的已给的正例集合和反例集合中归纳产生出描述所有正例并排除所有反例的该概念的一般规则,而扩张矩阵理论将寻找正例在反例背景下所满足的公式等价为在反例矩阵上找出一条生路.该文针对多类有重叠问题,改进了原有的扩张矩阵算法,引入了基于平均熵的最短公式近似解的启发式搜索,并利用势函数估计正、反例间重叠区域的概率密度函数,从而获得类间非线性判别界面.文章将此算法应用于手写汉字识别,通过分析比较。 Learning from examples is to obtain a general rule through induction from a given set of positive and negative examples of a concept, which may describe all the positive examples, and reject all the negative examples of that concept. According to the extension matrix theory, to discover the equations which satisfy all positive examples on the background of negative examples may be considered as to find a path within the matrix of negative examples. In order to deal with the multi class problems with overlay, an improved extension matrix algorithm has been proposed in this paper. The heuristic search based on average entropy has been used to get the approximate solutions of the shortest equation. The potential function is used to estimate the probability density function of the overlay area between positive and negative examples, so that the non linear interfaces of the interclass areas may be obtained. The improved algorithms have been applied to handwritten Chinese character recognition and its effectiveness has been proved through comparison study and analysis.
出处 《软件学报》 EI CSCD 北大核心 1999年第9期989-995,共7页 Journal of Software
基金 国家863 高科技项目基金
关键词 示例学习 扩张矩阵 算法 机器学习 专家系统 Learning from examples, extension matrix, average entropy, potential function, handwritten Chinese character recognition.
  • 相关文献

参考文献4

  • 1蔡元龙.模式识别[M].西安电子科技大学出版社,1990..
  • 2石大明,舒文豪.势函数在示例学习扩张矩阵中的应用[J].模式识别与人工智能,1996,9(2):149-154. 被引量:2
  • 3蔡元龙,模式识别,1990年
  • 4Hong Jiarong,Int J Computer Information Science,1985年,14卷,6期,421页

二级参考文献3

  • 1蔡元龙,模式识别,1990年
  • 2洪家荣,计算机学报,1989年,2期
  • 3洪家荣,International Journal of Computer and Information Sci,1985年,14卷,6期

共引文献1

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部