摘要
Titanium nitride (TiN) nanoparticles were prepared from a novel refluxing-derived precursor.The organic/inorganic hybrid precursor was prepared by a two-stage refluxing method using hydrous TiO2 as titania source and n-dodecane as carbon source.The precursor was heat-treated to 1 200 °C in flowing ammonia (NH3) to get TiN nanoparticles.The phase and chemical compositions were investigated by means of XRD,Raman spectroscopy and XPS.Samples microstructure was studied by means of SEM,TEM and SEAD.XRD pattern indicated that the product was face-centered cubic TiN with a lattice constant a = 4.236 · and average crystallite sizes of 35.2 nm.Raman spectra indicated that long time refluxing results in Alkane dehydrogenation and the formation of coke on TiO2 nanoparticles.Oxygen presence in TiN lattice was confirmed by XPS investigation.The particle size that was showed by Electron microscopy photographs ranged from 20 to 60 nm.
Titanium nitride (TiN) nanoparticles were prepared from a novel refluxing-derived precursor.The organic/inorganic hybrid precursor was prepared by a two-stage refluxing method using hydrous TiO2 as titania source and n-dodecane as carbon source.The precursor was heat-treated to 1 200 °C in flowing ammonia (NH3) to get TiN nanoparticles.The phase and chemical compositions were investigated by means of XRD,Raman spectroscopy and XPS.Samples microstructure was studied by means of SEM,TEM and SEAD.XRD pattern indicated that the product was face-centered cubic TiN with a lattice constant a = 4.236 · and average crystallite sizes of 35.2 nm.Raman spectra indicated that long time refluxing results in Alkane dehydrogenation and the formation of coke on TiO2 nanoparticles.Oxygen presence in TiN lattice was confirmed by XPS investigation.The particle size that was showed by Electron microscopy photographs ranged from 20 to 60 nm.
基金
Funded by Key Technologies Research and Development Program of Sichuan Province (No.2006Z02-17)