期刊文献+

神经网络技术在织机生产状况预测中的应用 被引量:1

Application of artificial neural network to prediction of loom production
下载PDF
导出
摘要 为提高织机生产效率,研究了基于优化神经网络的织机生产运转状况预测方法。针对BP网络模型的缺点,在反复实验的基础上对BP网络参数、算法进行改进,建立了织机生产运转状况预测模型,并与传统的BP神经网络预测方法进行比较。实验结果表明,利用改进的BP神经网络预测织机生产运转状况时,网络收敛速度快,预测精度高,优于传统的BP网络模型,能够取得较好的预测效果,从而准确设置织机生产参数,确保织机正常运转。 In order to forcast loom production operation,optimize the parameters of loom production,and then improve the efficiency,we studied the prediction of loom production based on the optimized neural network.In light of the disadvantages of traditional BP network the network parameters and algorithm is improved to make prediction model of loom production.Results show that improved BP neural network has high convergence speed and high forecast accuracy,helps accurately set production parameters and ensures normal operation of looms.
出处 《河北科技大学学报》 CAS 北大核心 2011年第3期273-276,共4页 Journal of Hebei University of Science and Technology
关键词 BP神经网络 织机生产状况 改进 预测 BP neural networks loom production optimization prediction
  • 相关文献

参考文献3

二级参考文献25

  • 1王永骥 涂健.神经元网络控制[M].北京:机械工业出版社,1999..
  • 2SEIDL D R,LORENZ R D.A structure by which a recurrent neural networks can approximate a nonlinear dynamic system[J].Proc IJCNN.1991(2):709-714.
  • 3LILK.Approximation theory and recurrent networks[J].Proc LICNN,1992(2):266-271.
  • 4PINEDA F J.Generalization of back-propagation to recurrent neural networks[J].Physical Reu Lett,1987,59:2 229-2 232.
  • 5LI Hong-ru,GU Shu-sheng,DENG Chang-hui.Recursive prediction error algorithm of recurrent neuraI networks alad its applieation onnonlinear dynamic system modeling[J].Journal of Northeastern University,2000,21(6):590-593.
  • 6Randall S Sexton, Robert E Dosey, John D Johnson. Toward global optimization of network: A comparison of the genetic algorithm and back propagation. Decision Support Systems, 1998. 22:171 - 185.
  • 7Randall S Sexton, Jatinder N D Gupta.Comparative evaluation of genetic algorithm and back propagation for training neural networks. Information Sciences , 2000. 129:45 - 59.
  • 8Randall S Sexton, Robert E Dorsey, John D Johnson.Optimization of neural network: A comparative analysis of the genetic algorithm and simulated annealing. European Journal of Operational Research, 1999. 114:589 - 601.
  • 9M Mandischer. A comparison of evolution strategies and back propagation for neural network training. Neurocomputing, 2002. 42:87 - 117.
  • 10Randall S Sexton, Baharam Alidaee, Robert E Dorsey,John D Johnson. Global optimization for artificial neural networks: A tabu search application. European Journal of Operation Reseach, 1998. 106: 570-584.

共引文献28

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部