期刊文献+

自适应小波变换更新滤波器的优化研究 被引量:2

Study on optimal update filter based on lifting schemeadaptive wavelet transform
下载PDF
导出
摘要 基于提升格式的小波变换被称为第二代小波变换,该种结构提供了一种灵活构造非线性小波分解和重构的方法。G.Piella根据提升格式小波变换的结构特点,提出了一种不需要额外附加信息就可完成精确重构的自适应更新滤波器,但算法只说明了滤波器系数需要满足精确重构的条件,没有具体说明如何确定滤波器的系数。在先选定预测滤波器的基础上,本文根据最小均方误差准则,提出了优化的小波更新滤波器的设计方法。最后以M IT/B IH数据库中心电图信号为例,通过与其他不同结构的小波变换进行比较分析,验证了优化的小波更新滤波器的性能。 Wavelet transforms via lifting scheme provides a general and an adaptive flexible tool for the construction of wavelet decompositions and perfect reconstruction filter banks.According to the construction of the lifting wavelet transforms,G.Piella presents an adaptive update lifting scheme,where the perfect reconstruction is possible without sending any side information.The perfect reconstruction condition for the filter coefficients is presented in G.Piella's algorithm,but the method for determining the filter coefficients is not illustrated.An optimal filter design method for the adaptive update wavelet transform is proposed.The optimal filter coefficients can be acquired based on the Minimum Mean Square Error Criteria(MMSE) in the algorithm.Compare with other wavelet transform filter,simulation results show that the optimal wavelet update filter presented by this paper can achieve the better linear approximation for the ECG data obtained from the M IT/B IH database.
出处 《电路与系统学报》 CSCD 北大核心 2011年第3期81-86,122,共7页 Journal of Circuits and Systems
基金 杭州市重点实验室科技计划项目资助课题(20080431T08) 浙江省自然科学基金项目资助课题(Y1110632)
关键词 提升格式 自适应小波变换 最小均方差 lifting scheme adaptive wavelet transform minimum mean square error
  • 相关文献

参考文献11

  • 1郭兴明,吴玉春,肖守中.自适应提升小波变换在心音信号预处理中的应用[J].仪器仪表学报,2009,30(4):802-806. 被引量:21
  • 2高广春,姚庆栋.应用于分段连续信号的基于提升格式的双自适应小波变换[J].电路与系统学报,2005,10(3):116-119. 被引量:3
  • 3M Mrak,E Izquierdo.Spatially Adaptive Wavelet Transform for Video Coding with Multi-Scale Motion Compensation. IEEE International Conference on Image Processing . 2007
  • 4R Claypoole,R Baraniuk,R Nowak.Adaptive wavelet transforms via lifting. Technical Report 9304,Department of Electrical and Computer Engineering,Rice University,Houston,Texas . 1999
  • 5G Piella,H J A M.Heijmans.Adaptive lifting schemes with perfect reconstruction. PNA-R0104,CWI . 2001
  • 6http://www.physionet.org/physiobank/database/mitdb/[OL] .
  • 7Claypoole R,Baraniuk R,Nowak R.Nonlinear wavelet transforms for image coding. Proceedings of the31st Asilomar Conference on Signals,Systems and Computers . 1997
  • 8H.J.A.M. Heijmans,B.Pesquet-Popescu,G.Piella.Building nonredundant adaptive wavelets by update lifting. . 2002
  • 9Sole J,Salembier P.Adaptive discrete generalizedlifting for lossless compression. 2004 IEEE Inter-national Conference on Acoustics,Speech,and SignalProcessing(ICASSP’04) . 2004
  • 10QUELLEC G,LAMARD M.Adaptive non-separable wavelet transform via lifting and its application to content-based image retrieval. Image Processing Europe . 2010

二级参考文献17

  • 1夏平,向学军,吉培荣,万钧力.基于自适应提升方案的激光探测系统消噪[J].微计算机信息,2006(09S):274-275. 被引量:3
  • 2吴延军,徐泾平,赵艳.心音的产生与传导机制[J].生物医学工程学杂志,1996,13(3):280-288. 被引量:35
  • 3杨慧中,钟豪,丁锋.基于多重小波变换的信号去噪及其在软测量中的应用[J].仪器仪表学报,2007,28(7):1245-1249. 被引量:17
  • 4SWELDENS W.The lifting scheme:A custom-design construction of biorthogonal wavelets[J].Journal of Appl.and Computer Harmonic Analysis,1996,3(2):168-200.
  • 5STEPIEN J,ZIELINSKI T P.Signal denoising using line-adaptive lifting wavelet transform[A].IEEE Conf.Instrumentation and Measurement Technology Conference[C].2001,2:1386-1391.
  • 6CLAYPOOLE R L,BARANIUK R G.Adaptive wavelet Transforms via lifting[A].IEEE Conf.on Acoustics,Speech and Signal Processing[C].1998,3:1513-1516.
  • 7Antonini M, Barlaud M, Mathieu P, et al. Image coding using wavelet transform[J]. IEEE Trans. Image Process, 1992-04, 1(2): 205-220.
  • 8Calderbank R C, Daubechies I, et al. Wavelet transforms that map integers to integers[J]. Appl. Comput. Harmon. Anal., 1996, 3: 337-357.
  • 9Chan T, Zhou H M. Adaptive ENO-wavelet transforms for discontinuous functions[A]. Tech. Rep.21, Computational and Applied Mathematics[C]. UCLA, los Angeles, 1999.
  • 10Sweldens W. The lifting scheme: a construction of second generation wavelets[J]. SIAM J. Math. Anal., 1997, 29(2): 511-546.

共引文献22

同被引文献31

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部