摘要
铁路编组站到达场应有的股道数量, 不仅和到达场每日到达的列车数量有关, 而且还和这些列车到达的均衡程度以及驼峰的负荷程度有关, 但人们往往忽视后一点。本文采用排队论的方法, 建立单服务台和多服务台的数学模型, 结合实例验证, 阐明了上述观点,
The number of tracks which is necessary for a railway marshalling yard depends not only on the number of trains arriving everyday,but also on the temporal equilibrium degree of these trains and the hump load which however are frequently neglected.Using the theory of queueing,this paper establishes mathematics models of single service desk and multi service desks,explains the above mentioned viewpoint with case examples puts forward the formula for calculating the number of tracks in the reception yard and gives the reference value of the hump load.
出处
《中国铁道科学》
EI
CAS
CSCD
北大核心
1999年第2期97-108,共12页
China Railway Science
关键词
驼峰负荷
列车
延误
到达场
股道数
Hump load, Train delay, Reception yard, Number of tracks