期刊文献+

中长期电力负荷预测的改进免疫粒子群算法 被引量:5

Improved Particle Swarm Optimization with Immunity Algorithms for Medium and Long Term Load Forecasting
下载PDF
导出
摘要 针对免疫粒子群算法收敛速度慢,精确度相对较低的缺点,采用平衡理论和自适应调整两项策略加以改进,提出改进的免疫粒子群算法。一方面在新的粒子种群产生过程中引入扰动变量,使粒子群在遵守秩序和随机行为之间达到平衡;另一方面在粒子搜索复杂解空间过程中,通过计算个体适应值划分粒子的优劣等级,提出粒子速度自适应可调机制。实例证明,将改进的免疫粒子算法应用到中长期电力负荷组合预测是可行的,具有较高的精度及收敛速度。 An improved particle swarm optimization with immunity algorithms(IA PSO)based on equity theory and adaptive adjustment is proposed to solve the shortcomings of IA-PSO for slow convergence rate and rela-tively low accuracy. On the one hand,through leading pertubation variables into the generation process of particle population,a balance is reached between the order and the random behaviors. On the other hand,and adjust able mechanism of the adaptive particle velocity is proposed through the division of particle levels,which is ob tained by computing adaptive value. Examples show that it is feasible to apply the improved IA-PSO to the combination forecast of medium and long term load,with better accuracy and convergence speed.
出处 《电力系统及其自动化学报》 CSCD 北大核心 2011年第3期139-144,共6页 Proceedings of the CSU-EPSA
关键词 免疫粒子群算法 中长期电力负荷 组合预测 扰动变量 自适应调节 particle swarm optimization with immunity algorithms medium and long term load combined forecasting perturbation variables adaptive adjusting
  • 相关文献

参考文献14

二级参考文献99

共引文献354

同被引文献50

  • 1王翠茹,孙辰军,杨静,冯海迅.改进残差灰色预测模型在负荷预测中的应用[J].电力系统及其自动化学报,2006,18(1):86-89. 被引量:42
  • 2吴静敏,左洪福,陈勇.基于免疫粒子群算法的组合预测方法[J].系统工程理论方法应用,2006,15(3):229-233. 被引量:23
  • 3孙翠娟.基于K型核函数的支持向量机[J].淮海工学院学报(自然科学版),2006,15(4):4-7. 被引量:17
  • 4章健.电力系统复合模型与辨识[M].北京:中国电力出版社,2007.
  • 5Zhang Ming-guang. Short-term load forecasting based on sup- port vector machines regression[C]//Proceedings of 2005 Inter- national Conference on Machine Learning and Cybernetics. Lanzhou,China, 2005,7 : 4310-4314.
  • 6Chert Bo-iuen, Chang Ming-wei, Lin Chih-Jen. Load forecasting using support vector machines:a study on EUNITE competition 2001[J]. IEEE Transactions on Power Systems, 2004, 19 (4): 1821-1830.
  • 7Vapnik N. The Nature of Statistical Learning Theory[M]. New- york: Springer-Verlag, 19 9 5.
  • 8Suykens J A K, Vanddewalle J. Least squares support vector machines classifiers[J]. Neural Network Letters, 1999,19 (3) 293-300.
  • 9Kennedy J, Eberhart R. Particle swarm optimization [C] //IEEE International Conference on Neural Networks. Perth, Australia, 1995,4:1942-1948.
  • 10KARABOGA D. An idea based on honey bee swarm for numerical timization[R]. Technical Report-TR06. Erciyes University, 2005.

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部