摘要
针对时间序列法的自回归动平均模型和神经网络算法在负荷预测中的不足,提出对这两种预测结果采用加权组合方法,在不同时期的负荷预测采用不同的加权值来提高预测结果的精确度。通过算例分析短期负荷预测和长期负荷预测,证明采用加权组合方法的预测结果比自回归动平均模型和神经网络算法分别预测要准确。
In view of disadvantages of autoregressive integrated moving average model and neural network algorithm of time series method in load forecasting,the paper proposes that the two forecasting results should adopt weighted combination method and load forecasting in different stages should adopt different weights to promote accuracy of forecasting results.Short-term load forecasting and long-term forecasting are analyzed via examples,which proves that forecasting result from weighted combination method is more accurate than that from either autoregressive integrated moving average model or neural network algorithm.
出处
《广东电力》
2011年第5期69-72,102,共5页
Guangdong Electric Power
关键词
负荷预测
自回归动平均模型
神经网络算法
加权组合
load forecasting
autoregressive integrated moving average model
neural network algorithm
weighted combination