期刊文献+

基于特征融合的人脸识别 被引量:6

Face Recognition Based on Feature Fusion
下载PDF
导出
摘要 针对单一的人脸特征在识别中的局限性,提出了一种基于特征融合的人脸识别方法,首先利用主成分分析获得原始输入图像的特征脸,经图像重构处理得到原始图像的余像,然后抽取余像的特征脸,最后将两种特征脸按一定的权重融合成一个组合特征进行人脸识别,通过针对ORL人脸数据库的实验表明:该特征融合方法的人脸识别是行之有效的,优于传统特征脸的方法,识别率可以达到91.5%. A new face recognition method based on features fusion is suggested in order to overcome the limitation of sole facial feature in recognition.Firstly,the eigenface of original face images is extracted by the technology of principal component analysis,after the image is obtained by reconstructing face images.Secondly,the second order eigenface is obtained in the same way.Finally these two kinds of eigenface are fused into a combined one over their respective matching score weighted by a set of coefficients.The method is evaluated on ORL database based on the third neighbor classifier.The experimental results show that eigenface fusion method for face recognition have high feasibility,and the recognition rate is better than traditional eigenface method,with the accuracy rate reaching 91.5%.
作者 刘嵩
出处 《湖北民族学院学报(自然科学版)》 CAS 2011年第2期188-190,共3页 Journal of Hubei Minzu University(Natural Science Edition)
基金 湖北省自然科学基金项目(2009CDB069) 恩施州科技局项目"基于ICA的人脸识别技术在门禁系统的应用研究" 湖北民族学院青年项目"嵌入式网络视频监控系统研究"
关键词 特征脸 人脸识别 特征融合 主成分分析 eigenface face recognition features fusion principal component analysis
  • 相关文献

参考文献9

  • 1杨晓莉.结合PCA与ICA的Munsell色卡光谱反射比重建[J].湖北民族学院学报(自然科学版),2010,28(2):150-153. 被引量:5
  • 2徐春明,乐晓蓉,王正群.一种基于核主成分特征组合的人脸识别方法[J].计算机工程与应用,2006,42(3):76-78. 被引量:7
  • 3王蕴红,范伟,谭铁牛.融合全局与局部特征的子空间人脸识别算法[J].计算机学报,2005,28(10):1657-1663. 被引量:41
  • 4陈伏兵.人脸识别中鉴别特征抽取若干方法研究[D]南京理工大学,南京理工大学2006.
  • 5刘丽娜.基于特征脸和多特征的人脸识别算法研究[D]山东大学,山东大学2006.
  • 6Jiang Xudong,Mandal B,Kot A.Eigenfeature Regularization and Ext raction in Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2008
  • 7Zhu Jianke,Lyu MR.Face Annotation Using Transductive Kernel Fisher Discriminant. IEEE Trans onMultimedia . 2008
  • 8Fang, Y.,Tan, T.,Wang, Y."Fusion of Global and Local Feature for Face Verification". IEEE International Conference on Pattern Recognition(ICPR) . 2002
  • 9Jian Yang,Alejandro F Frangi,Jing-yu Yang,David Zhang,Zhong Jin.KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2005

二级参考文献36

  • 1Pentland A.Looking at people:sensing for ubiquitous and wearable computing[J].IEEE Trans Pattern Anal Machine Intell, 2000 ; 22 ( 1 ) : 107-119.
  • 2Maxim A,Grudin.On internal representations in face recognition systems[J],Pattem Recognition,2000;33(8) :1161-1177.
  • 3Turk M,A PentIand.Face recognition using Eigenfaces[C].In:Proc IEEE Conf on Computer Vision and Pattern Recognltion,1991:586-591.
  • 4Pentland A,Moghaddam B,Starner T.View-based and mododular eigenspaces for face recognition[C].In :Proc IEEE Conf on Computer Vision and Pattern Recognition, 1994 : 84-91.
  • 5Wang L,Tan T K,Experiments results of face description based on the 2nd-order eigenfaces method[S].ISO/MPEG 6001 ,Geneva,2000-05.
  • 6Wang L,Tan T K,A new proposal for face feature description[S].ISO/ MPEG m6001 ,Noordwi kerhout,2000-05.
  • 7Kim Hyun-Chul,Kim Sung Daijin,Yang Bang et al.Face Recognition using the Second-order mixture-of-eigenfaces method[J].Pattem Recognition, 2004 ; 37 (8) : 337-349.
  • 8Schoelkopf B,Mika S,Burges C et al.Input space vs feature space in kernel-based methods[J].IEEE Trans Neural Networks, 1999, (10) :1000-1017.
  • 9Schoelkopf B ,Smola A,Robert Muller K.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computer,1998;(10): 1299-1319.
  • 10Aapo Hyvarinen,Juha Karhunen,Erkki Oja著(芬兰).独立成份分析[M].周宗潭,董国华,徐昕,等,译.北京:电子工业出版社,2007.

共引文献50

同被引文献18

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部