期刊文献+

基于粒子群优化算法的航天器惯性参数辨识 被引量:3

Identification of Spacecraft Inertia Parameters Based on Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 在地面上精确测量航天器的惯性参数是困难的,并且由于燃料的消耗、航天器的交会对接、载荷及姿态的变化等因素将会使航天器的惯性参数在轨发生变化。因而航天器的控制系统、状态估计系统将会受到航天器惯性参数变化的影响。在轨辨识出航天器的惯性参数,可以为更加优化、实时的控制航天器服务。文中提出了一种基于粒子群优化算法的航天器惯性参数辨识算法。建立了引入带有模型误差以及由于航天器惯性参数变化引起的误差的航天器姿态运动学与动力学模型,基于模型误差最小准则建立目标函数,利用改进的粒子群优化算法对模型误差进行实时估计,从而实现对航天器惯性参数的辨识,并将其应用到航天器的姿态控制中,并通过仿真实验证明了该算法的有效性以及实用性。 It is difficult to precisely measure inertia parameters on the ground.Meanwhile the inertia parameters can change on-orbit as fuel is expended and the configurations or payloads are changed.Hence spacecraft control,state estimation systems are affected by the variations of the spacecraft's inertia parameters.Estimating the spacecraft's inertia parameters on orbit is good to control the spacecraft optimally and real-time.A method of estimating the spacecraft's inertia parameters using the particle swarm optimization algorithm is presented in this paper.The attitude kinematics and dynamics models of spacecraft are established with the modeling error and the error caused by the change of the inertia parameters.The cost function based on the minimum-model-error criterion is introduced.The particle swarm optimization algorithm is used to make real-time estimation of the error.It is used to optimize the control system of the spacecraft.The result of the simulation shows the method is effective and practical.
出处 《机械制造与自动化》 2011年第3期101-104,共4页 Machine Building & Automation
关键词 粒子群优化算法 惯性参数 辨识 航天器 particle swarm optimization algorithm inertia parameters identification spacecraft
  • 相关文献

参考文献10

  • 1付国江,王少梅,刘舒燕,李宁.改进的速度变异粒子群算法[J].计算机工程与应用,2006,42(13):48-50. 被引量:15
  • 2雷开友.粒子群算法及其应用研究[D]西南大学,西南大学2006.
  • 3Thienel J K,Luquette R J,Sanner R M.Estimation of SpacecraftInertia Parameters. AIAA Guidance,Navigation and ControlConference and Exhibit . 2008
  • 4MARK P.Estimation of a spacecraft’s attitude dy-namics parameters by using flight data. Journal ofGuidance Control,and Dynamics . 2005
  • 5Wilson E,Lages C,Mah R.On-line,gyro-based,mass-propertyidentification for thruster-controlled spacecraft using recursive leastsquares. The 45thMidwest Symposium on Circuits and Systems . Aug.4-72002
  • 6BORDANY R,STEYN W H,Crawford M.In-orbit esti mation of the inertia matrix and thruster parameters ofUoSAT-12. 14th AIAA/USU Conference on Small Satellites . 2000
  • 7Chaturvedi N A,Bernstein D S,Ahmed J, et al.Globally convergent adaptive tracking of angular veloc-ity and inertia identification for a 3-DOF rigid body. IEEE Transactions on Control Systems Technology . 2006
  • 8Shi Y,Eberart RC.A Modified Particle Swarm Optimizer. Proceeding of IEEE World Conference on Computational Intelligence . 1998
  • 9Crassidis J L,Markley F L.Predictive filtering for nonlinear systems. Journal of Guidance Control and Dynamics . 1997
  • 10Tanygin S,Williams T.Mass property estimation using coasting maneuvers. Journal of Guidance Control and Dynamics . 1997

二级参考文献5

  • 1付国江,王少梅,刘舒燕,李宁.含速度变异算子的粒子群算法[J].华中科技大学学报(自然科学版),2005,33(8):48-50. 被引量:4
  • 2Kennedy J,Eberhart R C.Particle Swarm Optimization[C].In:IEEE Service Center ed.IEEE International Conference on Neural Networks Ⅳ,Piscataway:IEEE Press,1995:1942 ~ 1948
  • 3Clerc M,Kennedy J.The Particle Swarm-Explosion,Stability,and Convergence in a Multidimensional Complex Space[J].IEEE Transaction on Evolutionary Computation,2002 ;6 (1):58~73
  • 4Mendes R,Kennedy J,José Neves.The Fully Informed Particle Swarm:Simpler,Maybe Better[J].IEEE Trans on Evolutionary Computation,2004; 8 (3):204~210
  • 5Eberhart R C,Shi Y.Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization[C].In:IEEE Service Center ed.Proceedings of the Congress on Evolutionary Computing,Piscataway:IEEE Press,2000:84~89

共引文献14

同被引文献19

  • 1Berkovitz D, Kong E, Miller D. System identification of the SPHERES autonmous rendezvous and docking testbed [C] //AIAA Space 2003 Conference, Long Beach, CA, AIAA2003-6385, 2003 1-10.
  • 2Bergmann E V, Walker B K, Levy D R. Mass property esti- mation for control o{ asymmetrical satellites [J]. Journal of Guidance, Control, and Dynamics, 1987, 10 (5): 483-491.
  • 3Bergmann E V, Dzielski J. Spacecraft mass property identiiq- cation with torque-generating control [J]. Journal of Guid- ance, Cont?ol, and Dynamics, 1990, 13 (1) 99-103.
  • 4Richfield R F, Walker B, Bergmann E V. Input selection for a second-order mass property estimator [J]. Journal of Guidance, Control, and Dynamics, 1988, 11 (3): 207-212.
  • 5Tanygin S, Williams T. Mass property estimation using coasting maneuvers [J]. Journal of Guidance, Control, and Dynamics, 1997, 20 (4): 625-632.
  • 6Wilson E, Sutter D W. Motion-based mass and thruster- property identification for thruster-controlled spacecraft [C] //AIAA Infotech Aerospace Conference, Arlington, Virginia, AIAA 2005-6907, 2005: 26-29.
  • 7Psiaki M. Estimation of a spacecraft s attitude dynamics parameters by using flight data [J]. Journal of Guidance, Control, and Dynamics, 2005, 28 (4): 594-603.
  • 8Ma O, Dang H, Pham K. On-orbit identification of inertia properties of spacecraft using robotics technology [C] // AIAA Guidance, Navigation and Control Conference and Ex- hibit, Hilton Head, South Carolina, AIAA 2007-6815, 2007: 1-24.
  • 9Ma O, Dang H, Pham K. On-orbit identification of inertia properties of spacecraft using a robotic arm [J]. Journal of Guidance, Control and Dynamics, 2008, 31 ( 6 ): 1761-1771.
  • 10Maria Carmela Di Piazza,Gianpaolo Vitale. Photovoltaic sources modeling and emulation EM~. London: Spring- Verlag,2013 (in Chinese).

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部