期刊文献+

基于多特征融合跟踪的微小肺结节识别算法 被引量:1

Detection of Lung Mini-nodules Using Multi-feature Tracking
原文传递
导出
摘要 如何在海量的肺部高分辨率CT(HRCT)序列图片中准确识别微小结节(直径为5~10 mm)一直是肺结节计算机辅助检测(CAD)系统的研究重点和难点。本文提出了一种新的微小肺结节识别算法——多特征融合跟踪算法。该算法在处理一个HRCT序列图片时,首先结合大津法和形态学方法获取每一张CT图的肺实质,再通过基于灰度阈值和改进的模板匹配算法提取感兴趣区域(ROI),接着计算ROI的多个有效特征,然后在整个HRCT序列图片中进行ROI的多特征跟踪和融合,最后根据分类规则识别并标出候选肺结节。实验证明,该算法能准确地检测出微小肺结节,且假阳率较低。 How to accurately identify mini-nodules in a large amount of high resolution computed tomography(HRCT) images is always a significant and difficult issue in lung nodule computer-aided detection(CAD).This paper describes a new mini-nodules detection method which is based on a multi-feature tracking algorithm.Our detection method began after running the Da-Jing algorithm and morphological operation to extract the lung region of every HRCT image in a sequence.Once the lung had been extracted,a hybrid algorithm,combining gray threshold and improved template matching,was used to obtain the regions of interest(ROI).Next,several characteristics of each ROI were calculated to identify the final results by using multi-feature tracking throughout the whole HRCT image sequence.The results showed that the proposed method would be of high accuracy with a low occurrence of false positives.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2011年第3期437-441,共5页 Journal of Biomedical Engineering
基金 中国博士后基金资助项目(20090450866) 教育部博士点基金资助项目(200805610018) 广东省教育部产学研结合项目资助(2009B090300057) 广东省自然科学基金资助项目(8451064101000631) 广州市番禺区科技攻关项目资助(2009-Z-108-1) 华南理工大学中央高校基本科研业务费资助项目(2009ZM0077)
关键词 高分辨率CT 微小肺结节 计算机辅助检测 特征跟踪 模板匹配 High resolution computed tomography(HRCT) Lung mini-nodule Computer-aided detection(CAD) Feature tracking Template matching (TM)
  • 相关文献

参考文献8

  • 1GINNEKEN B, ROMENY H, VIERGEVER M. Computer- aided Diagnosis in chest radiography: A survey [J]. IEEE Transactions on Medical Imaging, 2001, 20(12):1228-1241.
  • 2LI W, NIE S, CHENG J. A fast automatic method of lung segmentation in CT images using mathematical morphology [J]. IFMBE Proceedings, 2006, 4(14) :2419-2422.
  • 3ARMATO III S G, SENSAKOVIC W F. Automated lung seg- mentation for thoracic CT:Impact on computer-aided diagnosis [J]. Academic Radiology, 2004,11 (9) : 1011-1021.
  • 4LEE Y, FUJITA H, ITOH S, et al. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique [J]. IEEE Transactions on Medi- cal Imaging, 2007,20(7) :595-604.
  • 5GIGER M, BAE K, MACMAHON H. Computerized detec- tion of pulmonary nodules in computed tomography images [J]. Radiology, 2008, 29(5):459-465.
  • 6OZEKES S, OSMAN O. Computerized lung nodule detection using 3D feature extraction and learning based algorithms [J]. Journal of Medical Systems, 2010,34(2) :185-194.
  • 7ARMATO S G, MCLENNAN G, MCNITT-GRAY M F. Lung image database consortium:Developing a resource for the medical imaging research community [J]. Radiology, 2004, 232(3) :739-748.
  • 8SLUIMER I, SCHILLHAM A, PROKOP M. Computer anal- ysis of computed tomography scans of the lung: A survey [J]. IEEE Transactions on Medical Image, 2006, 25(4):385-405.

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部