期刊文献+

完全非线性一致椭圆方程的边界爆破问题

Boundary blow-up problems for fully nonlinear uniformly elliptic equations
原文传递
导出
摘要 利用逼近的方法研究了完全非线性一致椭圆方程F(D2u)=g(x,u)在区域DRn内的爆破解,即当d(x,D)→0时,解u(x)→∞,得到了完全非线性一致椭圆方程爆破解的存在性、惟一性和不存在性。 The large solutions,i.e.solutions such that u(x)→∞ as d(x,D)→0,of fully nonlinear elliptic equations F(D2u)=g(x,u) in a domain DRn are investigated by the method of approximation.The existence,uniqueness and nonexistence of large solutions of fully nonlinear uniformly elliptic equations are obtained.
作者 代丽美
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第6期34-36,共3页 Journal of Shandong University(Natural Science)
关键词 完全非线性 一致椭圆 爆破解 fully nonlinear uniformly elliptic large solutions
  • 相关文献

参考文献10

  • 1LOEWNER C, NIRENBERG L. Partial differential equations invariant under confonnal or projectivetransformations [ C ]// Contributions to Analysis. New York:Academic Press, 1974: 245-272.
  • 2RADEMACHER H. Einige besondere Problee partieller Differentialgleichungen, Die Differential-und Integralgleichungen der Mechanik und Physik,I[M]. 2nd ed. New York: Rosenberg, 1943.
  • 3BIEBERBACH L. △u = e^u und die automorphen Funktionen[J]. Math Ann, 1996, 77:173-212.
  • 4BANDLE C, MARCUS M. Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior [J].J d'Anal Mathem, 1992, 58:9-24.
  • 5CIESTEA F C, TROMBETTI C. On the Monge-Ampere equation with boundary blow-up: existence, uniqueness and asymptotics[J]. Calc Var, 2008, 31:167-186.
  • 6JIAN H. Hessian equations with infinite Dirichlet boundary value[J].Indiana University Math J, 2006, 55:1045-1062.
  • 7SALANI P. Boundary blow-up problems for Hessian equations[J]. Manuscripta Math, 1998, 96:281-294.
  • 8FAKIMOTO K. Solutions to the boundary blow up problem for k-curvature equation[J]. Calc Var, 2006, 26:357-377.
  • 9CABREX, CAFFARELLI L, LUIS A. Regularity for viscosity solutions of fully nonlinear equations F(D2u) = 0[J].Topol Methods Nonlinear Anal, 1995, 6:31-48.
  • 10GALBARG D, TRUDINGER N S. Elliptic partial differential equations of second order[M]. 2nd ed. Berlin: Springer-Verlag, 1983.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部