期刊文献+

内可逆工质恒比热Meletis-Georgiou循环有限时间热力学建模与性能优化 被引量:2

Finite-Time Thermodynamic Modeling and Optimization of Endoreversible Meletis-Georgiou Cycle with Constant Specific Heat of Working Fluid
下载PDF
导出
摘要 应用有限时间热力学理论建立内可逆工质恒比热Meletis-Georgiou(MG)循环模型,导出循环各点温度、循环功、效率等性能参数表达式,并对MG循环性能进行分析和优化。应用数值计算方法,得到循环功与效率特性关系;分别以循环功和效率为目标,对压缩比、转换比、过膨胀比进行优化并得到一系列优化结果;分析了传热损失及循环各参数对循环性能与优化结果的影响。所得结果对实际MG发动机的设计优化有一定指导作用。 An endoreversible Meletis-Georgiou (MG) cycle model with constant specific heat of working fluid has been established and the analytical formulae of performance parameters including each point temperatures, work output and efficiency are derived by using the finite time thermodynamic theory. The performance of the MG cycle is analyzed and optimized. The relation between work output and efficiency is obtained by detailed numerical examples. Taking the work output and efficiency as objectives, a series of optimal results are obtained by optimizing the compression ratio, changeover ratio and over-expansion ratio. The effects of the heat transfer loss and design parameters on the cycle performance and optimization are analyzed. The results may provide guidelines for the optimal design of practical MG engine.
出处 《热力透平》 2011年第2期115-120,共6页 Thermal Turbine
基金 国家自然科学基金(10905093) 教育部新世纪优秀人才支持计划项目(NCET-04-1006) 全国优秀博士学位论文作者专项资金资助项目(200136)
关键词 有限时间热力学 Meletis—Georgiou循环 性能分析优化 finite time thermodynamics Meletis-Georgiou cycle performance analysis and optimization
  • 相关文献

参考文献15

  • 1Bejan A. Entropy Generation on Minimization: The New Thermodynamics of Finite-Size Device and Finite-Time Processes [ J]. J. Appl. Phys., 1996, 79(3) : 1191 -1218.
  • 2Chen L, Sun F. Advances in Finite Time Thermodynamics: Analysis and Optimization [ M ]. New York: Nova Science Publishers, 2004.
  • 3Sieniutycz S, Jezowski J. Energy Optimization in Process Systems [ M ]. Oxford : Elsevier, 2009.
  • 4Klein S A. An Explanation for Observed Compression Ratios in Internal Combustion Engines [ J ]. Trans ASME J. Eng Gas Turbine Pow. , 1991, 113(4) :511 -513.
  • 5Blank D A, Wu C. Optimization of the Endoreversible Otto Cycle with Respect to Both Power and Mean Effective Pressure [ J ]. Energy Convers. Manage., 1993, 34(12):1255- 1209.
  • 6Chen L, Wu C, Sun F. Heat Transfer Effects on the Net Work Output and Efficiency Characteristics for an Air Standard Otto Cycle [ J]. Energy Convers. Manage., 1998, 39(7): 643-648.
  • 7Chen L, Zen F, Sun F, Wu C. Heat Transfer Effects on the Net Work Output and Power As Function of Efficiency for Air Standard Diesel Cycle [J]. Energy Int. J., 1996, 21(12): 1201-1205.
  • 8Sahin B, Kesgin U, Kodal A, Vardar N. Performance Optimization of a New Combined Power Cycle Based on Power Density Analysis of the Dual Cycle [ J ]. Energy Convers. Manage., 2002, 43 ( 15 ) : 2019 -2031.
  • 9Al-Sarkhi A, Akash A B, Jaber J O, Mohsen M S, Abu-Nada E. Efftciency of Miller Engine at Maximum Power Density [ J ]. Int. Comm. Heat Mass Transf, 2002, 29(8) : 1159 -1157.
  • 10A1-Hinti I, Akash B, Abu-Nada E, Al-Sarkhi A. Performance Analysis of Air-Standard Diesel Cycle Using an Alternative Irreversible Heat Transfer Approach [ J ]. Energy Convers. Manage.. 2008.49(11) : 3301 -3304.

同被引文献4

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部