期刊文献+

用于微创手术导航的六自由度电磁跟踪方法 被引量:7

Six Degree-of-freedom Electromagnetic Tracking Method for Navigation of Minimal Invasive Operation
下载PDF
导出
摘要 目的为在微创手术中确定体内器械的位置和方向,提出一种不依赖磁场模型电磁跟踪方法。方法采用体外2根可在三维空间旋转的磁棒,利用磁场最大值搜索体内微型正交三轴磁场传感器以确定其位置,进而依据磁棒轴线上磁场方向特点,利用坐标系旋转关系确定传感器的空间姿态。我们对系统的误差和跟踪特性进行了仿真,并设计了实验原型进行验证。结果初步的实验结果表明,在40 cm范围内系统平均的位置和方向误差分别为1.387 cm和5.023°。仿真结果还表明,若进行精确参数测量,系统可以达到更加理想的精度。结论本方法能够满足微创手术导航的要求,且算法简单可靠,有良好的应用前景。 Objective By using non-iterative algorithm,to propose and verify a novel non-model-based electromagnetic method for tracking the position and orientation of instruments inside the human body during the minimal invasive operation.Methods The proposed method was realized by rotating 2 coils outside human body to search for the position of a minimal 3-axis orthogonal magnetic sensor inside body,with maximal magnetic flux density.The orientation of the sensor could be calculated from the relationship between the coordinate frame of the sensor and that of the coils based on the direction of magnetic flux densities along the axis of the coils.The simulation experiment was used to evaluate the error performance and the tracking performance of the system.Then the real performance of the method was evaluated by in vitro experiments.Results Experimental results showed that the averaged position error was 1.387 cm and the averaged orientation error was 5.023° within the tracking region of 40 cm.It was also shown from the simulation that a higher resolution might be obtained.Conclusion Therefore,the proposed method can effectively satisfy the requirement of the navigation in the minimally invasive operation with a simple algorithm and thus has a good prospect in application.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2011年第3期197-203,共7页 Space Medicine & Medical Engineering
基金 上海市重点学科建设项目资助(B112)
关键词 微创手术 电磁跟踪 不依赖模型 非迭代 六自由度 minimally invasive operation electromagnetic tracking non-model-based non-iterative six degree-of-freedom
  • 相关文献

参考文献12

  • 1Kuipers J. Object tracking and orientation determination means, system and process[ P] : US, 3868565. 1975-2-25.
  • 2Raab FH. Remote object position locater[ P] : US, 4054881. 1977-10-18.
  • 3Blood EB. Device for quantitatively measuring the relative po- sition and orientation of two bodies in the presence of metals utilizing direct current magnetic fields [ P ]: US, 4849692. 1990-7-31.
  • 4Paperno E, Sasada I, Leonovich E. A new method for magnet- ic position and orientation tracking[ J]. IEEE Transactions on Magnetics, 2001, 37(4) : 1938-1940..
  • 5Schlageter V, Besse PA, Popovic RS, et al. Tracking system with five degrees of freedom using a 2d-array of hall sensors and a permanent magnet[ J]. Sensors and Actuators A-Physi- cal, 2001,92(1-3) : 37-42..
  • 6Plotkin A, Paperno E. 3-d magnetic tracking of a single sub- miniature coil with a large 2-d array of uniaxial transmitters [ J]. IEEE Transactions on Magnetics, 2003, 39 (5) : 3295- 3297..
  • 7Yang WA, Hu C, Meng M, et al. A 6D magnetic localization algorithm for a rectangular magnet objective based on a parti- cle swarm optimizer [ J ]. IEEE Transactions on Magnetics, 2009, 45(8) : 3092-3099..
  • 8Govari A. Electromagnetic position single axis system [ P ] : US, 6484118. 2002-11-19.
  • 9Schneider M. Measuring position and orientation using mag- netic fields[ P] : US, 6073043. 2000-06-06.
  • 10Wan' An Y, Chao H, Meng MQH, et al. A six-dimensional magnetic localization algorithm for a rectangular magnet objec- tive based on a particle swarm optimizer[ J]. IEEE Transac- tions on Magnetics, 2009, 45(8) : 3092-3099.

同被引文献127

  • 1林艳萍,张文强,王成焘.手术导航系统中器械的可视化与实时跟踪[J].生物医学工程学杂志,2006,23(5):995-998. 被引量:12
  • 2刘广健,吕明德,谢晓燕,周旭辉,徐辉雄,匡铭,徐作峰,郑艳玲,梁瑾瑜,黄蓓.实时虚拟导航系统引导消融治疗肝癌[J].中华超声影像学杂志,2006,15(10):758-760. 被引量:15
  • 3Cleary K, Bruno J,Wright J, et al. Computer-assisted andimage-guided abdominal interventions [ C]. Biomedical Ima-ging: From Nano to Macro, 2008 IEEE International Symposi-um on,Paris, 2008 : 1379-1382.
  • 4Huang X,Gutierrez LF, Stanton D, et al. Image registrationbased 3D TEE-EM calibration [ C]. Biomedical Imaging:From Nano to Macro, 2010 IEEE International Symposiumon, Rotterdam, 2010: 1209-1212.
  • 5Xu D. Advanced tracking technology for computer assistedtherapy [ C]. Second National Medical Devices academic andindustry forums, Nanjing,2003.
  • 6Soper TD,Haynor DR, Glenny RW, et al. In vivo validationof a hybrid tracking system for navigation of an ultrathin bron-choscope within peripheral airways [ J]. IEEE Transactions onBiomedical Engineering, 2010,57(3) : 736-745.
  • 7Weitschies W, Wedemeyer J, Stehr R, et al. Magnetic mark-er as a noninvasive tool to monitor gastrointestinal transit[ J].IEEE Transaction on Biomedical Engineering, 1994,41 (2 ):192-195.
  • 8Schlagete V, Besse PA, Popovic RS, et al. Tracking systemwith five degrees of freedom using a 2d-array of hall sensorsand permanent magnet[ J] . Sensors and Actuators A: Physi-cal, 2001’ 92(1-3) :3742.
  • 9Schneider MR, Electromagnetic tracking for catheter localiza-tion [C/OL]. [ 2012-03-12]. http://proceedings, spiedigi-tallibrary. org/proceeding, aspx? articleid =976152.
  • 10M. Schneider. Measuring position and orientation using mag-netic fields, US: 6073043[P]. 2000.

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部