期刊文献+

不依赖油水界面激活的黑曲霉脂肪酶突变体的构建 被引量:1

Construction of Aspergillus niger lipase mutants with oil-water interface independence
原文传递
导出
摘要 为获得不依赖油水界面激活的黑曲霉脂肪酶(ANL)突变体,在生物信息学分析基础上,对黑曲霉脂肪酶盖子结构域两侧铰链区的氨基酸残基进行了置换突变,获得两个黑曲霉脂肪酶突变体(ANL-Ser84Gly和ANL-Asp99Pro)。对不同浓度对硝基苯丁酸酯的水解活性检测结果表明:ANL-Ser84Gly的催化活性仍依赖油水界面,而ANL-Asp99Pro的催化活性不再依赖油水界面。底物特异性检测结果表明:较ANL而言,ANL-Ser84Gly的比活力显著降低,其水解对硝基苯棕榈酸酯、对硝基苯豆蔻酸酯、对硝基苯月桂酸酯和对硝基苯癸酸酯的比活力分别降低了29.8%,53.1%,60.1%和77.1%;而ANL-Asp99Pro水解对硝基苯棕榈酸酯的比活力提高了2.2倍。铰链区的突变破坏了突变体蛋白质分子ANL-S84G与ANL-D99P的二级结构作用力,使突变体分子的二级结构域更趋不稳定,从而导致了突变体分子的热稳定性显著降低。不依赖油水界面激活的脂肪酶突变体的构建,将有利于深入了解脂肪酶界面激活的分子机制。 Based on previous bioinformational analysis results,two Aspergillus niger lipase(ANL) mutants,ANL-Ser84Gly and ANL-Asp99Pro were constructed to screen ANL mutants with oil-water interface independence.ANL-Ser84Gly still displayed a pronounced interfacial activation,while ANL-Asp99Pro displayed no interfacial activation.The specific activity of ANL-Ser84Gly towards p-nitrophenyl palmitate(-myristate,-laurate and-decanoate) decreased by 29.8%(53.1,60.1 and 77.1,respectively) than that of ANL,while the specific activity of ANL-Asp99Pro towards p-nitrophenyl palmitate increased by 2.2-fold.The mutation in the hinge region at both sides of the lid domain also destabilized various secondary structure factors of ANL-S84G and ANL-D99P,which resulted in a substantial decrease in thermostability.The achievement to construct oil-water interface-independent ANL mutants would help to further understand lipase interfacial activation mechanism.
出处 《生物工程学报》 CAS CSCD 北大核心 2011年第6期860-867,共8页 Chinese Journal of Biotechnology
基金 国家高技术研究发展计划(863计划)(No.2007AA100703) 国家自然科学基金(No.30870545) 福建省自然科学基金(杰青)(No.2009J06013)资助~~
关键词 黑曲霉 脂肪酶 盖子结构域 界面活性 重叠延伸聚合酶链式反应 Aspergillus niger lipase lid domain interfacial activation overlap extension polymerase chain reaction
  • 相关文献

参考文献21

  • 1Jaeger KE, Dijkstra BW, Reetz MT. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol, 1999, 53(1): 315-351.
  • 2Kim KK, Song HK, Shin DH, et al. The crystal structure of a triacylglyeerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure, 1997, 5(2): 173-185.
  • 3Grochulski P, Li YG, Schrag JD, et al. Two conformational states of Candida rugosa lipase. Protein Sci, 1994, 3(1): 82-91.
  • 4Cajal Y, Svendsen A, Girona V, et al. Interfacial control of lid opening in Thermomyces lanuginosa lipase. Biochemistry, 2000, 39(2): 413-423.
  • 5Carrasco-L6pez C, Godoy C, de Las Rivas B, et al. Activation of bacterial Thermoalkalophilic lipases is spurred by dramatic structural rearrangements. J Biol Chem, 2009, 284(7): 4365-4372.
  • 6van Pouderoyen G, Eggert T, Jaeger KE, et al. The crystal structure of Bacillus subtili lipase: a minimal ct/13 hydrolase fold enzyme. J Mol Biol, 2001, 309(1): 215-226.
  • 7Uppenberg J, Hansen MT, Patkar S, et al. The sequence,crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure, 1994, 2(4): 293-308.
  • 8Verger R. 'Interfacial activation' of lipases: facts and artifacts. Trends Biotechnol, 1997, 15(1): 32-38.
  • 9Miled N, Bussetta C, de Caro A, et al. Importance of the lid and cap domains for the catalytic activity of gastric lipases. Comp Biochem Physiol B: Biochem Mol Biol, 2003, 136(1): 131-138.
  • 10Overbeeke PLA, Govardhan C, Khalaf N, et al. Influence of lid conformation on lipase enantioselectivity. J Mol Catal B: Enzymatic, 2000, 10(4): 385-393.

同被引文献30

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部