摘要
数组4 ,16 ,37 ,58 ,89 ,145 ,42 ,20 ,前一个的各位数码平方和等于相邻后一个数,最后一个数的各位数码平方和等于第一个数且证明了对任何给定自然数n ,若其各位数码平方之和记为 A( n)1 , A( n)1 的各位数码平方之和记为 A( n)2 ,…, A( n)k-1 的各位数码平方之和记为 A( n)k ,…,构成一个数列{ A( n)k } ,则一定存在k0 ,使当k ≥k0 时,或者 A( n)k = 1 或者 Ank 与4 ,16 ,37 ,58 ,89 ,145 ,42 ,20 之中某个相等.
The sequence of non_negative integers 4,16,37,58,59,145,42,20, satisfy that the sum of each digit's square of the front one is equal to the next one, the sum of each digit's square of the last one is equal to the first one. For every natural number n , let A (n) 1 denote the sum of each digit;s square of n , and let A (n) k denote the sum of each digit's square of A (n) k-1 , …, So A (n) k form a sequence. Then there exists an integer k 0 , such that as k≥k 0, A (n) k=1 or A (n) k is equal to one of the sequence 4,16,37,58,89,145,42,20.
出处
《曲阜师范大学学报(自然科学版)》
CAS
1999年第4期45-46,共2页
Journal of Qufu Normal University(Natural Science)