摘要
研究了 Sasakian 空间形式中的子流形是全测地子流形的几个充分条件,得出相应的拼挤常数,改进了前人的结果,即设 Mn 是 Sasakian 空间形式 M2n+ 1 (c)中的可积的紧致极小子流形,当(1) K> n- 28n (c+ 3);(2) Q> n2 - 2n- 14n (c+ 3);(3) σ2 ≤n+ 16 (c+ 3)三个条件之一满足时, M
A submanifold of Sasakian space form being totally geodesic submanifold is studied and given the pinching constants. A wide use is made of the theorems put forward by former researchers, i.e. Let M n be a compact minimal integral submanifold of Sasakian space form 2n+1 (c) , when one of the following three conditions is satisfied, then M is totally geodesic: (1) K>n-28n(c+3);(2) Q>n 2-2n-14n(c+3);(3) σ 2≤n+16(c+3).
出处
《陕西师大学报(自然科学版)》
CSCD
北大核心
1999年第3期21-23,27,共4页
Journal of Shaanxi Normal University(Natural Science Edition)