期刊文献+

Sasakian空间形式中的紧致极小子流形 被引量:1

A compact minimal submanifold of Sasakian space form
下载PDF
导出
摘要 研究了 Sasakian 空间形式中的子流形是全测地子流形的几个充分条件,得出相应的拼挤常数,改进了前人的结果,即设 Mn 是 Sasakian 空间形式 M2n+ 1 (c)中的可积的紧致极小子流形,当(1) K> n- 28n (c+ 3);(2) Q> n2 - 2n- 14n (c+ 3);(3) σ2 ≤n+ 16 (c+ 3)三个条件之一满足时, M A submanifold of Sasakian space form being totally geodesic submanifold is studied and given the pinching constants. A wide use is made of the theorems put forward by former researchers, i.e. Let M n be a compact minimal integral submanifold of Sasakian space form 2n+1 (c) , when one of the following three conditions is satisfied, then M is totally geodesic: (1) K>n-28n(c+3);(2) Q>n 2-2n-14n(c+3);(3) σ 2≤n+16(c+3).
作者 姬兴民
出处 《陕西师大学报(自然科学版)》 CSCD 北大核心 1999年第3期21-23,27,共4页 Journal of Shaanxi Normal University(Natural Science Edition)
关键词 截面曲率 RICCI曲率 极小子流形 Sasakian空间 section curvature Ricci curvature second fundamental form minimal submanifold
  • 相关文献

参考文献1

同被引文献4

  • 1Yau S T. Submanifolds with constant curvature ( I )[J]. Amer Jour of Math, 1974,96: 346--366.
  • 2Yau S T. Submanifolds with constant curvature ( Ⅱ )[J]. Amer Jour of Math, 1975,97:76--100.
  • 3Shen Yibing. Submanifolds with nonnegative sectional curvature[J]. Chin Ann of Math, 1984, 5B(4) : 625--632.
  • 4Ghern S S, Carmo M do, Kobayashi S. Minimal submanifolds of a sphere with second fundamental form of constant length[J]. Functional Analysis and Related Fields, 1970,12:60--75.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部