摘要
考虑Banach空间X中的非线性微分方程x"-x±n=f(t)在一定条件下利用不动点定理证明了上述方程在非空闭凸集SCX中概周期解的存在性。
in this paper we consider a nonlinear ordinary differential eqUation X' - X ± + Xn = f(t ) in a Banach space X. Under a celtain condition by using the fixed point theorem we prove the existence of the almost Periodic solution of the foregoing equations in the unempty, dosed, convex set S C X.
关键词
非线性微分方程
概周期解
不动点原理
Nonlinear differential equation, almost Periodic solution,Principle of fixed point