期刊文献+

认知无线电多目标优化算法研究 被引量:1

Research on the Multi-objective Optimization Algorithm of Cognitive Radio
下载PDF
导出
摘要 认知无线电是指能够感知周围频谱环境并动态使用频谱资源的智能无线通信系统。认知无线电的多目标优化问题是一个典型的动态参数优化问题。以传输能量、数据率以及误比特率等多个参数为目标,采用一种基于DNA计算的非支配排序多目标遗传算法(DNA-GA)来对其进行优化。将CR可调参数进行编码作为染色体,产生大小为N的初始化种群,并根据CR目标函数计算个体适应度,再结合克隆操作使算法收敛于全局最优,最终得到CR系统的最优操作参数。仿真结果表明,DNA-GA可以在不同用户需求情况下获得较好的性能优化。 Cognitive radio is an intelligent wireless communication system which can detect the spectrum environment and use free spectrum resource. The Multi-objective Optimization Algorithm of Cognitive Radio is a typical dynamic parameter optimization problem. Taking parameters like transmission power, data rate and false bitrates as objectives, this paper presents an optimization algorithm based on a DNA multi-objective genetic algorithm (DNA-GA). Then it encodes the CR adjustable parameter as chromosomes and gains the initialization population about N, and calculates the individual fitness goals with the CR objective function, meanwhile clone operator is used to converge to the global pareto-optimal, thus to finally get the optimal operation parameters of CR. The simulation results in different service requirements show that DNA-GA can achieve effectively good performance optimization.
出处 《洛阳理工学院学报(自然科学版)》 2011年第2期40-44,共5页 Journal of Luoyang Institute of Science and Technology:Natural Science Edition
基金 国家自然科学基金"认知无线电智能学习与决策关键技术研究"(61072138)
关键词 认知无线电 多目标优化 DNA-GA 传输参数 cognitive radio multi-objective optimization DNA-GA transmission parameters
  • 相关文献

参考文献5

  • 1王国强,李金龙,张敏,王煦法.多目标遗传算法求解认知无线电性能优化问题[J].计算机工程与应用,2007,43(20):159-162. 被引量:4
  • 2Pursley M B,Royster T C l,Skinner J S.Protocols for the selection,adjustment,and adaptation of transmission parameters in dynamic spectrum access networks[C]//Proc IEEE Int Symp New Frontiers in Dynamic Spectrum Access Networks, Baltimore,M D,2005:649-657.
  • 3Brlemann L, Mangold S,Walke B H.Policy-based reasoning for spectrum sharing in radio networks[C]//Proc IEEE Int Symp New Frontiers in Dynamic Spectrum Access Networks,Baltimore, M D,2005:1-10.
  • 4Rieser C J.Biologically Inspired Cognitive Radio Engine Model utilizing distributed genetic algorithms for secure and robust wireless communications and networking[D]. Blacksburg,Virginia:Dept of Electrical Engineering in Virginia Tech,2004.
  • 5Newman T R, Barker B A, Wyglinski A M,et al. Cognitive engine implementation for wireless multicarrier transceivers[J]. Wi ley InterScience, wireless communications and mobile computing,2007(7):1129-1142.

二级参考文献8

  • 1FCC.Fcc report of the spectrum efficiency working group[R],November 15,2002.
  • 2Mitola J.Cognitive radio for flexible mobile multimedia communications[C]//Proceedings of the Sixth IEEE International Workshop on Mobile Multimedia Communications (MoMuC' 99),San Diego,CA,USA,1999:3-10.
  • 3Rondeau T W,Rieser C J,Le B,et al.Cognitive radios with genetic algorithms:intelligent control of software defined radios[C]//Proc SDR' 04,Phoenix,AZ,2004.
  • 4Pursley M B,Royster T C I,Skinner J S.Protocols for the selection,adjustment,and adaptation of transmission parameters in dynamic spectrum access networks[C]//Proc IEEE Int Symp New Frontiers in Dynamic Spectrum Access Networks,Baltimore,MD,2005:649-657.
  • 5Berlemann L,Mangold S,Walke B H.Policy-based reasoning for spectrum sharing in radio networks[C]//Proc IEEE Int Symp New Frontiers in Dynamic Spectrum Access Networks,Baltimore,MD,2005:1-10.
  • 6Rieser C J.Biologically Inspired Cognitive Radio Engine Model utilizing distributed genetic algorithms for secure and robust wireless communications and networking[D].Blacksburg,Virginia:Dept of Electrical Engineering in Virginia Tech,2004.
  • 7朱浩鹏.多目标遗传算法研究[EB/OL].http://www.easyworm.com/chinese/document/Chapter4.htm.
  • 8Zitzler E,Thiele L.Multiobjective evolutionary algorithms:a comparative case study and the strength Pareto approach[J].IEEE Trans Evolutionary Computation,1999,3(4):257-271.

共引文献3

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部