期刊文献+

固定接触界面法向静弹性刚度 被引量:11

Normal static elastic stiffness of fixed contact interface
下载PDF
导出
摘要 基于Hertz接触理论推导了两个微凸体之间互相作用的法向接触静弹性刚度。根据修正后的一个微接触点的平截面积尺寸分布,给出了界面的总法向接触静弹性条件刚度、总条件载荷的解析解。将法向静弹性刚度的解析解嵌入到有限元软件中,获得整机的理论模态。通过实验对解析解进行了定量验证。以机床结合部为研究对象,在理论振型与实验振型一致的条件下,模型的相对误差在-17.8%~17.3%之间。 The solution for contact normal static elastic stiffness of two interacting asperities is derived by means of Hertz contact theory.The analytical expressions for the joint interface total normal contact static elastic stiffness with a certain condition and total load with a given one are deduced according to the modified size distribution of a microcontact truncated area.The theoretical mode in whole machine tools could be obtained when the analytical solution for normal static elastic stiffness is inserted into finite element software.The analytical solutions are quantitatively validated by experiments.A joint interface in machine tools is selected as an example,in view of the encouraging coincidence of theoretical vibration modes with experimental ones,the relative discrepancies in the model are between-17.8 % ~17.3 %.
出处 《应用力学学报》 CAS CSCD 北大核心 2011年第3期318-322,330,共5页 Chinese Journal of Applied Mechanics
基金 三峡大学青年科学基金(ZJX200605)
关键词 固定接触界面 静弹性法向刚度 域扩展系数 接触点的尺寸分布 分形维数 fixed contact interface normal static elastic stiffness domain extension factor size distribution of contact spots fractal dimension.
  • 相关文献

参考文献7

二级参考文献28

  • 1饶柱石,夏松波,汪光明.粗糙平面接触刚度的研究[J].机械强度,1994,16(2):72-75. 被引量:43
  • 2贺林,朱均.粗糙表面接触分形模型的提出与发展[J].摩擦学学报,1996,16(4):375-384. 被引量:59
  • 3Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between rough surfaces [J ]. Journal of Tribology, Transactions of ASME, 1991, 113(1) : 1-- 11.
  • 4Wang S, Komvopoulos K. A fractal theory of the interracial temperature distribution in the slow sliding regime: part II- multiple domains, elastoplastic contacts and applications [ J ]. Journal of Tribology, Transcations of ASME, 1994, 116 (4) : 824-- 832.
  • 5Wang S, Komvopoulos K. A fractal theory of the interracial temperature distribution in the slow sliding regime; part I-elastic contact and heat transfer analysis[J]. Journal of Tribology, Transactions of ASME, 1994, 116(4) .812--823.
  • 6Majumdar A. Fractal characterization and simulation of rough surfaces[J]. Wear, 1990, 136(2) : 313-327.
  • 7Majumdar A, Bhushan Bharat. Fractal Model of Elastic- Plastic Contact Between Rough Surfaces[J]. Journal of Tribology, 1991,113(1) : 1-11.
  • 8Wang S, Komvopoulos K. A Fractal Theory of the Interracial Temperature Distribution in the Slow Sliding Regime: Part Ⅰ --Elastic Contact and Heat Transfer Analysis[J]. Journal of Tribology, 1994,116(4):812- 823.
  • 9Chung Jung Ching, Lin Jen Fin. Fractal Model Developed for Elliptic Elastic-Plastic Asperity Microcontacts of Rough Surfaces[J]. Journal of Tribology, 2004,126 (4) :646-654.
  • 10Liou Jeng Luen, Lin Jen Fin. A New Method Developed for Fraetal Dimension and Topothesy Varying with the Mean Separation of Two Contact Surfaces[J]. Journal of Tribology, 2006,128 (3) : 515-524.

共引文献146

同被引文献125

引证文献11

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部