摘要
对于3阶非齐次线性微分方程y′′′+py″+qy′+ry=f,由它对应齐次方程的2个线性无关特解y1,y2与其Wronski行列式w,应用降阶法推导出一个求解公式为y=y1(C3+∫w/y12(C2+∫y1/w2e-∫pdx(C1+∫w2y12fe∫pdxdx)dx)dx).
For the differential equation y″+py″+qy′+ry=f,assuming Yl, Y2 are two linearly independent particular solutions and w is the corresponding Wronskian determinant, we derive the following formula for the general solution of the differential equation by using the order reduction method. y=y1(C3+∫ ω/y1^2(C2+∫ y1/ω2 e-∫pdx(C1+∫ ω2/y1^2 ∫ w2/yi^2 fe ∫pdx dx)dx)dx).
出处
《高等数学研究》
2011年第3期1-2,共2页
Studies in College Mathematics
基金
云南师范大学精品课程教学团队资助项目
关键词
线性微分方程
特解
降阶法
linear differential equation, particular solution, order reduction method