期刊文献+

柔性神经树模型的结构优化算法的改进 被引量:1

The Improvement of Structure Optimization Algorithm Based on Flexible Neural Trees
下载PDF
导出
摘要 利用柔性神经树模型的改进结构优化算法对流程工业生产过程的参数进行筛选,在精确度最高的前提下在最短的时间内找到影响生产过程的重要参数,为流程工业生产过程控制提供理论依据。在柔性神经树模型的学习过程中,本算法的进化代数不是一个固定值,而是以误差率来控制进化代数,试验证明这种算法使模型最优,效率和精确度最高。柔性神经树模型的结构和参数优化分别由概率增强式程序进化和模拟退火算法完成。本文以水泥生产中重要生产过程之一的分解炉的生产过程为研究对象。研究结果表明本文提出的改进方法是非常有效的。 In this paper,we introduce an improved structure optimized algorithm based on flexible neural tree model and using it filter important parameters of fluid industry's production process.On the premise of the highest accuracy in the shortest time find important parameters impacting the production process,and provide theoretical basis for process control of fluid industry production.In the process of structural optimization,the number of evolution generation in this algorithm is not fixed,but using error rate control evolution.The structure and parameters of flexible neural tree are optimized by probabilistic incremental program evolution and simulation annealing respectively.We take production process of decomposing furnace as an example,one of important cement 's processes.The results show that the proposed method is effective and practical.
出处 《微计算机信息》 2011年第6期227-228,234,共3页 Control & Automation
关键词 流程工业 柔性神经树模型 误差率 概率增强式程序 模拟退火 分解炉 Fluid industry Flexible neural tree model Error rate Probabilistic incremental program evolution Simulation annealing Decomposed furnace
  • 相关文献

参考文献5

  • 1陈月辉,杨波,董吉文,Ajith Abraham. Time-series forecasting using flexible neural tree model [J].信息科学、2005,174:219-235.
  • 2R.P. Salustowicz, J. Schmidhuber, Probabilistic incremental pro- gram evolution [J].Evol. Comput, 1997, 2 (5): 123 - 18-1.
  • 3陈月辉,杨波,Ajith Abraham. Flexible Neural Trees Ensemble for Stock Index Modeling [J]. Neurocomputing, 2007, 70: 697-703.
  • 4陈月辉,AjithAbraham,杨波.Hybrid Flexible Neural Tree Based Intrusion Detection Systems [J]. International Journal of Intelligent Systems,2007,22(4):337-352.
  • 5吴晓燕.基于遗传模拟退火算法的高维离群点挖掘[J].微计算机信息,2010,26(21):139-140. 被引量:3

二级参考文献9

  • 1张红,陆谊.基于数据挖掘的电信欺诈侦测模型[J].微计算机信息,2005,21(06X):44-45. 被引量:6
  • 2Hawkins D. Identification of outliers[M ]. London: Chapman and Hall, 1980.
  • 3Jia Wei HAN and KAMBER M,范明,孟晓峰译.Data mining concepts and techniques[M].北京:机械工业出版社,2007.
  • 4Jin, W., Tung, A.K.H., Han, J.: Mining top-n local outliers in large databases [C]. In Proc of SIGKDD International conference, San Francisco, California, USA,2001, pp. 293 - 298.
  • 5Aggarwal C,Yu P.An effective and efficient algorithm for high- dimensional outlier detection [J]. The VLDB Journal,2005,14(2): 211-221.
  • 6Bandyopadhyay, S., Santra, S., A genetic approach for efficient outlier detection in projected space [J],Pattem Re, ignition,2008,41 (4):1338-1349.
  • 7Aggarwal C C,Yu P S.Outlier detectionfor high dimensional data [C],In Proc of SIGKDD International conference, San Francisco, California, USA,2001,pp:34-g6.
  • 8Fabrizio Angiulli and Clara Pizzuti,Outlier mining in large high- dimensional data sets[J],IEEE Transactions on Knowledge and data engineering, 2005,17(2):203-215.
  • 9S Ramaswamy,R Rastogi,K Shim.Efficient algorithms for mining outliers from large data sets.In Proc of SIGMOD Intematiorml conference. Dallas, Texas, USA 2000,pp:427-438.

共引文献2

同被引文献4

  • 1崔庆安.基于粗糙集的焦炉加热工序控制规则提取[J].化工自动化及仪表,2005,32(6):20-23. 被引量:2
  • 2丁奇生,刘龙等.水泥烧成工艺与装备[M].北京:化学工业出版社.2007.
  • 3Z. Pawlak, Rough Sets: theoretical aspects of reasoning about data, Netherlands: Kluwer Academic Publishers,1991.
  • 4Shouning Qu , Guangqiang Cui. Research on Flow Object Knowledge Extraction Method.In:International Conference on Intelligent Networks and Intelligent Systems,Wuhan,China, November 2008.706-711.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部