期刊文献+

低剂量CT图像模型参数估计及统计去噪研究 被引量:3

Parameter estimation and statistical noise reduction for low-dose CT sinogram
下载PDF
导出
摘要 由于提高低剂量CT图像的信噪比是低剂量CT获得有效临床应用的关键,为此,提出了一种低剂量CT投影域的自适应统计降噪算法.针对低剂量CT投影图像的非平稳高斯噪声特性,采用EM算法自适应地估计图像模型中的参数,并在此基础上对图像进行最大后验概率估计,从而达到图像降噪的目的.在对参数的估计过程中,引入MCMC的吉布斯采样技术,并在算法中引入两项初始化技术,从而减少了参数估计过程中的计算量,加快了算法的收敛速度.对仿真投影数据以及真实投影数据的实验结果表明,与传统算法相比,该算法在抑制噪声及保持分辨率方面均具有明显优势. Improvement of the SNR of low-dose CT images is a crucial issue for the low-dose CT application. In this paper, we propose a novel adaptive statistical noise reduction algorithm for low-dose CT sinogram. The algorithm first adopts an EM algorithm to adaptively estimate the parameters of the image model based on the non-stationary Gaussian noise property in the low-dose CT projection data, and then uses the MAP estimation to restore the sinogram. In the parameters estimation procedure, a Gibbs sampler is used to handle the complicated computation problem. In addition, two initialization strategies are used in the algorithm to accelerate the convergence speed too. The effectiveness of the proposed algorithm is validated by both computer simulations and experimental studies. The advantage of the proposed approach over other methods is quantified by noise-resolution tradeoff curves.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2011年第3期99-106,共8页 Journal of Xidian University
基金 国家自然科学基金资助项目(61070137) 国家自然科学基金重点资助项目(60933009) 国家自然科学基金资助项目(30470490)
关键词 低剂量CT 图像降噪 参数估计 最大后验概率估计 low-dose CT noise reduction parameter estimation maximum a posteriori estimation
  • 相关文献

参考文献17

  • 1Yazdi M,Beaulieu L.Artifacts in Spiral X-ray CT Scanners:Problems and Solutions[J].International Journal of Biological and Medical Sciences,2009,4(3):135-139.
  • 2Hsieh J.Adaptive Streak Artifact Reduction in Computed Tomography Resulting from Excessive X-ray Photon Noise[J].Med Phys,1998(25):2139-2147.
  • 3Lu Hongbing,Hsiao I,Li X,et al.Noise Properties of Low-Dose CT Projections and Noise Treatment by Scale Transformations[C]//Nuclear Science Symposium Conference Record.IEEE Nuclear and Plasma Sciences Society.San Dieco:IEEE,2001:1662-1666.
  • 4陈利霞,丁宣浩,宋国乡,孙晓丽.基于总变分与小波变换的图像去噪算法[J].西安电子科技大学学报,2008,35(6):1075-1079. 被引量:10
  • 5卢孝强,孙怡.基于乘性正则化的有限角度CT重建算法[J].光学学报,2010,30(5):1285-1290. 被引量:11
  • 6Duan Xinhui,Zhang Li,Xing Yuxiang,et al.Few-view Projection Reconstruction with an Iterative Reconstruction-reprojection Algorithm and TV Constraint[J].IEEE Trans on Nucl Sci,2009,56(3):1377-1382.
  • 7La Rivière P,Bian J,Vargas P A.Penalized-likelihood Sinogram Restoration for Computed Tomography[J].IEEE Trans on Med Imag,2006,25(8):1022-1036.
  • 8Li T,Li X,Wang J,et al.Nonlinear Sinogram Smoothing for Low-Dose X-ray CT[J].IEEE Trans on Nucl Sci,2004,51 (5):2505-2513.
  • 9Wang J,Li T,Lu Hongbing,et al.Penalized Weighted Least-squares Approach to Sinogram Noise Reduction and Image Reconstruction for Low-Dose X-ray Computed Tomography[J].IEEE Trans on Med Imag,2006,25(10):1272-1283.
  • 10Wang J,Lu Hongbing,Wen J,et al.Multiscale Penalized Weighted Least-squares Sinogram Restoration for Low-Dose X-Ray Computed Tomography[J].IEEE Trans on Biomedical Engineering,2008,55(3):1022-1031.

二级参考文献30

共引文献19

同被引文献34

  • 1Kachelriess M, Watzke O, Kalender W A. Generalized multi-dimen- sional adaptive filtering for conventional and spiral single-slice, mu|ti- slice, and cone-beam CT [ J ]. Medical Physics 2001 , 28 (4) : 475 - 490.
  • 2Gui Z G, Liu Y. Noise reduction for Low-dose X-ray computed tomo- graphy with fuzzy filter [ J ]. Optik-Intemational Journal for Light and Electron Optics, 2012,123 ( 13 ) : 1207 - 1211.
  • 3Chen Y, Gao D Z, Nie C, et al. Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive-weighting local nonprior[ J]. Computerized Medical Imaging and Graphics, 2009,33 (7) :495 -500.
  • 4Rust G F, Aurich V, Reiser M. Noise dose reduction and image im- provements in screening virtual colonoscopy with tube currents of 20 mAs with nonlinear Gaassian filter chains[ C]//Medical Imaging 2002 Conference, New York : IEEE,2002 : 186 - 197.
  • 5Lui D, Cameron A, Modhafar A, et al. Low-dose computed tomo- graphy via spatially adaptive Monte-Carlo reconstruction [ J ]. Comput- erized Medical Imaging and Graphics, 2013,37(7 -8 ) :438 -449.
  • 6Zhong J, Sun H. Wavelet-based multiscale anisotropic diffusion with a- daptive statistical analysis for image restoration[ J]. IEEE Transactions on Circuits and Systems ,2008,55 (9) :2716-2725.
  • 7Perona P, Malik J. Scale space and edge detection using anisotrepic diffusion[ J]. IEEE Transactions on Pattern AnMysis and Machine In- telligence, 1990,12 (7) :629 - 639.
  • 8Chao S M, Tsai D M. An improved anisotropic diffusion model for de- tail and edge preserving smoothing [ J ]. Pattern Recognition Letters, 2010,31 (13) :2012 -2023.
  • 9Elbakri I A, Fessler J A. Statistical image reconstruction for polyener- getic X-ray computed tomography [ J] . IEEE Transactions on Medical Imaging,2002,21 (2) :89 -99.
  • 10Lu Hongbing, Li Xiang, Li Lihong, et al. Adaptive noise reduction to- ward low-dose computed tomography [ C ]. SPIE Proceedings Medical Imaging, 2003 : Physics of Medical Imaging,2003,5030:759 - 766.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部