期刊文献+

一种面向观点挖掘的多粒度话题情感联合模型 被引量:4

Multi-grain joint model of topic and sentiment for opinion mining
下载PDF
导出
摘要 为了提高文本观点挖掘的效率,通过扩展标准话题模型,提出了一种新颖的多粒度话题情感联合模型(MG-TSJ).模型将文本话题区分为全局和局部两类,同时挖掘文本中涉及的多层次话题信息和情感倾向信息.该模型采用非监督的学习方法,解决了现有方法存在的领域依赖问题.通过在测试语料库上进行实验,该模型在文本情感倾向性分类任务中的准确率达到82.6%,具有和监督分类系统相当的性能;挖掘话题集合呈现层次化、语义相关的特点,证明了MG-TSJ模型对观点挖掘是可行的和有效的. Based on extensions to standard topic modeling methods, a novel multi-grain joint model of topic and sentiment is proposed to improve efficiency of opinion mining. This model extracts sentiment and hierarchy topic from the text simultaneously, which distinguishes between local topics and global topics. The proposed model adopts the unsupervised learning method to address the issue of being domain dependent in existing methods. According to experiments, this model achieves an accuracy of 82. 6% for sentiment classification. It has a performance comparable to that of supervised sentiment classification methods. Moreover, the acquired collection of topics is hierarchy and semantic related. It is proved that the proposed model is feasible and effective for opinion mining.
作者 赵煜 蔡皖东
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2011年第3期181-188,共8页 Journal of Xidian University
基金 国家"863计划"资助项目(2009AA01Z424) 西北工业大学基础研究基金资助项目(NPU-FFR-JC200819)
关键词 观点挖掘 话题模型 多粒度话题情感联合模型 非监督学习 蒙特卡罗模拟法 opinion mining topic model multi-grain joint topic/sentiment model unsupervised learning Monte Carlo simulation
  • 相关文献

参考文献21

  • 1Kumar R,Novak J.On the Bursty Evolution of Blogspace[C]//The Twelfth International World Wide Web Conference.Budapest:ACM,2003:568-576.
  • 2Gruhl D,Guha R,Kumar R,et al.The Predictive Power of Online Chatter[C]//The Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Chicago:ACM,2005:78-87.
  • 3Mei Q,Zhai C.Discovering Evolutionary Theme Patterns from Text-An Exploration of Temporal Text Mining[C] //Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Philadelphia:ACM,2005:198-207.
  • 4Pang B,Lee L.Opinion Mining and Sentiment Analysis[J].Foundations and Trends in Information Retrieval,2008,2(1-2):1-135.
  • 5Tang H,Tan S,Cheng X.A Survey on Sentiment Detection of Reviews[J].Expert Systems with Applications,2009,36(7):10760-10773.
  • 6Pang B,Lee L,Vaithyanathan S.Thumbs up? Sentiment Classification Using Machine Learning Techniques[C]//Proceedings of EMNLP 2002.Philadelphia:ACL,2002:79-86.
  • 7Tan S,Zhang J.An Empirical Study of Sentiment Analysis for Chinese Documents[J].Expert Systems with Applications,2008,34(4):2622-2629.
  • 8Carenini G,Ng R,Pauls A.Multi-Document Summarization of Evaluative Text[C] //Proceedings of the 11 th European Chapter of the Association for Computational Linguistics.Trento:ACL,2006:3-7.
  • 9Zhuang L,Jing F,Zhu X.Movie Review Mining and Summarization[C]//The 15th ACM International Conference on Information and Knowledge Management.Virginia:ACM,2006:43-50.
  • 10Hu M,Liu B.Mining Opinion Features in Customer Reviews[C]//Proceedings of 19th National Conference on Artificial Intellgience.California:AAAI,2004:755-760.

同被引文献65

引证文献4

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部