期刊文献+

基于边缘相似性的背景差鬼影判别方法 被引量:3

Ghost Discriminant Method of Background Subtraction Based on Edge Similarity
下载PDF
导出
摘要 背景差视频运动目标检测算法存在的鬼影问题对智能视频监控应用有着严重的影响。通过实验发现鬼影和真实目标的前景差分图像具有不同的边缘相似特性,根据这一特性,定义图像边缘相似性度量函数,提出一种基于边缘相似性的鬼影判别方法。实验结果表明,与传统方法相比,该方法具有速度更快、适应性更好等优点。 The problem of ghost objects seriously affects the intelligent video surveillance application in background subtraction method for moving objects detection in videos.According to the characteristic that the ghost's foreground and the true object's foreground are different in the similarities of edge,and by defining edge similarity measure functions,this paper presents a ghost discriminant algorithm based on edge similarity.Experimental results show that compared with traditional methods,this method is effective and robust.
作者 金标 胡文龙
出处 《计算机工程》 CAS CSCD 北大核心 2011年第11期1-3,共3页 Computer Engineering
基金 国家"973"计划基金资助项目(2010CB327906)
关键词 背景差 运动目标 鬼影 边缘 相似性度量 background subtraction moving object ghost edge similarity measure
  • 相关文献

参考文献9

  • 1Lai A N,Yoon H,Lee G.Robust Background Extraction Scheme Using Histogram-wise for Real-time Tracking in Urban Traffic Video[C] //Proc.of the 8th IEEE International Conference on Computer and Information Technology.Sydney,Australia:[s.n.] ,2008:845-850.
  • 2McHugh J,Konrad J,Saligrama V,et al.Foreground-adaptive Background Subtraction[J].IEEE Signal Processing Letter,2009,16(5):390-393.
  • 3李广伦,殳伟群.视频监控系统中运动目标的实时检测[J].计算机工程,2009,35(17):217-218. 被引量:18
  • 4Cucchiara R,Grana C,Metal P.Detecting Moving Object,Ghosts,and Shadows in Video Streams[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(10):1337-1342.
  • 5Calderara S,Melli R,Prati A,et al.Reliable Background Suppression for Complex Scenes[C] //Proc.of the 4th ACM Workshop on Video Surveillance and Sensor Networks.Santa Barbara,California,USA:[s.n.] ,2006:211-214.
  • 6Cheung S C,Kamath C.Robust Background Subtraction with Foreground Validation for Urban Traffic Video[J].EURASIP Journal on Applied Signal Processing,2005,14(1):1-11.
  • 7Dedeoglu Y.Moving Object Detection,Tracking and Classification for Smart Video Surveillance[D].Ankara,Turkey:Bilkent University,2004.
  • 8吴亮,周东翔,范才智,蔡宣平.基于直方图匹配的鬼影检测算法[J].计算机工程与科学,2008,30(7):57-60. 被引量:7
  • 9Ziou D,Tabbone S.Edge Detection Techniques--An Overview[EB/OL].(2007-08-08).http://citeseerx.ist.psu.edu/viewdoc/surnmary.

二级参考文献17

  • 1Paragios N, Deriche R. Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(3): 266-280.
  • 2Fejes S, Davis L S. Detection of Independent Motion Using Directional Motion Estimation[R]. University of Maryland, Technical Report: CAR-TR-866, CS 3815, 1997.
  • 3Kim J B, Kim H J. Efficient Region-based Motion Segmentation for a Video Monitoring System[J]. Pattern Recognition Letters, 2003, 24(1-3): 113-128.
  • 4Maadi A E, Maldague X. Outdoor Infrared Video Surveillance: A Novel Dynamic Technique for the Subtraction of a Changing Background of IR Images[J]. Infrared Physics & Technology, 2007, 49(3): 261-265.
  • 5Cucchiara R, Grana C, Piccardi M. et al. Detecting Moving Object, Ghosts, and Shadows in Video Streams [J]. IEEE Trans on Pattern Analysis and Machinc Intelligence, 2003. 25 (10) : 1337-1342.
  • 6Calderara S, Melli R, Prati A, et al. Reliable Background Suppression for Complex Scenes[C]//Proc of ACM Workshop on Video Surveillance and Sensor Networks, 2006:211- 214.
  • 7Yang Tao, Pan Quan, Li Stan Z, et al. Multiple Layer Based Background Maintenance in Complex Environment [C]// Proc of the 3rd Int'l Conf on Image and Graphics. 2004:112-115.
  • 8Cheung S C. Kamath C. Robust Background Subtraction with Foreground Validation for Urban Traffic Video[J]. EURASIP Journal on Applied Signal Processing, 2005,14 (1):1-11.
  • 9Ruiz del Solar J ,Shats A,Verschae R. Real-Time Tracking of Multiple Persons[C]//Proc of the 12th lnt'l Conf on Image Analysis and Processing, 2003.
  • 10Yang Tao,l.i Stan Z,Pan Quan,et al. Real-Time and Accurate Segmentation of Moving Objcets in Dynamic Scene[C]//Proc of the ACM 2nd Int'l Workshop on Video Surveillance & Sensor Networks,2004 : 136-143.

共引文献23

同被引文献39

  • 1陈亮,陈晓竹,范振涛.基于Vibe的鬼影抑制算法[J].中国计量学院学报,2013,24(4):425-429. 被引量:21
  • 2付萍,方帅,徐心和,薛定宇.视频监控系统中运动目标检测的阴影去除方法[J].计算机工程,2007,33(10):22-24. 被引量:26
  • 3Wang L,Hu W,Tan T.Recent developments in human motion analysis[J].Pattern Recognition,2003,36(3):585-601.
  • 4Tavakkoli A,Nicolescu M,Bebis G,et al.Non-parametric statistical background modeling for efficient foreground region detection[J].Machine Vision and Applications,2009,20(6):395-409.
  • 5Haque M,Murshed M,Paul M.A hybrid object detection technique from dynamic background using Gaussian mixture models[C]//Proc of IEEE 10th Workshop on Multimedia Signal Processing,Cairns.Australia:Wiley,2008,21(5):915-920.
  • 6Chen Shengyong,Zhang Jianhua,Li Youfu,et al.A hierarchical model incorporating segmented regions and pixel descriptors for video background subtraction[J].IEEE Transactions on Industrial Informatics,2012,8(1):119-125.
  • 7Kang Jinman,Gajera K,Cohen I,et al.Detection and tracking of moving objects from over Iapping EO and IR sensors[C]//IEEE Computer Vision and Pattern Recognition Conference(CVPR’2004).Washington DC,USA:IEEE Computer Society Press,2004:748-758.
  • 8Stauffer C,Grimson W E L.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,20(8):747-755.
  • 9Elgammal A,Duraiswami R,Harwood D,et al.Background and foreground modeling using non-parametric kernel density estimation for visual surveillance[J].Proceedings of the IEEE,2002,90(7):1151-1163.
  • 10Kim K,Chalidabhongse T H,Harwood D,et al.Real-time foreground-background segmentation using codebook model[J].Real-Time Imaging,2005,11(3):172-185.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部