期刊文献+

基于遗传-拟牛顿混合算法的到达时间差定位 被引量:7

Time Difference of Arrival Localization Based on Genetic-quasi-Newton Hybrid Algorithm
下载PDF
导出
摘要 结合遗传算法的群体搜索性和拟牛顿迭代法的局部细致搜索性,提出一种基于遗传-拟牛顿混合算法的到达时间差定位方法。该方法利用遗传算法进行全局迭代,当收敛结果达到满意值后将其作为拟牛顿迭代的初始值继续迭代,直至得到精确解,由此克服遗传算法后期搜索效率低以及拟牛顿法对初始值敏感的缺陷。仿真结果表明,在参数设置合理的前提下,相比遗传算法和拟牛顿法,该混合算法性能稳定,具有较快的定位速度和较高的定位精度。 By combining group searching characteristic of Genetic Algorithm(GA) and local searching characteristic of quasi-Newton method,this paper proposes a hybrid localization algorithm for Time Difference of Arrival(TDOA).GA iterates globally until the satisfactory convergence value is achieved,and the value is used as the initial value of quasi-Newton iteration.The iteration process continues until the exact solution is get.So the hybrid algorithm overcomes the shortcomings that quasi-Newton method has high sensitivity to initial point and GA has low search efficiency in later period.Experimental results show that if the parameters are assumed reasonably,the hybrid algorithm has higher stability,localization rate and localization precision than GA and quasi-Newton method.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第11期220-222,共3页 Computer Engineering
基金 广东省科学计划基金资助项目(9151601501000000) 广东省惠州市科学计划基金资助项目(2009B020002022)
关键词 定位 遗传算法 拟牛顿算法 到达时间差 测量误差 localization Genetic Algorithm(GA) quasi-Newton algorithm Time Difference of Arrival(TDOA) measurement error
  • 相关文献

参考文献10

二级参考文献47

  • 1曾毅.浮点遗传算法在非线性方程组求解中的应用[J].华东交通大学学报,2005,22(1):152-155. 被引量:20
  • 2吴国辉,代冀阳,吴印华,朱国民.一种新的求解非线性方程组的混合遗传算法[J].南昌航空工业学院学报,2007,21(1):5-9. 被引量:6
  • 3焦磊,邢建平,张军,张璇,赵朝丽.一种非视距环境下具有鲁棒特性TOA无线传感网络定位算法[J].传感技术学报,2007,20(7):1625-1629. 被引量:19
  • 4Cruller D, Estrin D, Srivastava M. Guest Editors' Introduction: Overview of Sensor Networks[J]. Computer, 2004, 37(8): 20-23.
  • 5Jang J R. ANFIS: Adaptive-network-based Fuzzy Inference Systems[J]. 1EEE Transactions on Systems, Man, and Cybernetics, 1993, 23(3): 665-685.
  • 6Rappaport T S. Wireless Communications: Principles and Practice[M]. 2nd ed. [S. l.]: Prentice Hall Inc., 2002.
  • 7Tian Shuang, Zhang Xinming, Wang Xinguo, et al. A Selective Anchor Node Localization Algorithm fbr Wireless Sensor Networks[C]//Proc. of International Conference on Convergence Information Technology. [S. l.]: IEEE Press, 2007: 358-362.
  • 8Daniel J W. Newton method of nonlinear inequalities [J]. Numer Math, 1973, 21: 381--387.
  • 9Mayne D Q, Polak E, Heunis A J. Solving nonlinear inequalities in a finite number of iterations [J]. J Optim Theory Appl,1981, 33: 207--221.
  • 10Kanzow C, Pieper H. Jacobian smoothing methods for nonlinear complementarity problems [J]. SIAM Journal on Optimization, 1999 (9) : 342--373.

共引文献123

同被引文献67

引证文献7

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部