期刊文献+

一类带扩散项的HIV模型的平衡解的稳定性分析 被引量:3

Global stability of the equilibrium of a diffusive HIV model
下载PDF
导出
摘要 研究了一类齐次Neumann边界条件下带扩散项的HIV模型.运用赫尔维茨判定定理得出正常数平衡解在一定条件下的局部渐近稳定性;当游离病毒达到一定量时,通过构造Lyapunov函数得出正常数平衡解全局稳定的条件. A HIV model with diffusion is investigated under Neumann boundary condition.The local stability is obtained by Hurwitz theorem under some conditions,and the global stability can be obtained by construct Lyapunov functional under some conditions.
出处 《纯粹数学与应用数学》 CSCD 2011年第3期369-376,共8页 Pure and Applied Mathematics
基金 国家自然科学基金(10971124) 教育部高等学校博士点专项基金(200807180004)
关键词 HIV模型 局部稳定 全局稳定 HIV model local stability global stability
  • 相关文献

参考文献6

  • 1Nowak M A. The mathematical biology of human infections [J]. Conservation Ecology, 1999,3(2):12-17.
  • 2Rong Libin, Perelson Alan S. Modeling HIV persistence,the latent reservoir and viral blips[J]. Journal of Theoretical Biology, 2009,260:308-331.
  • 3May R M, Anderson R M. Transmission dynamics of HIV infection[J]. Nature, 1987,326:137-142.
  • 4R.Motta Jafelice, Bechara B F Z, Barros L C, et al. Celluar automata with fuzzy parameters in microscopic study of positive HIV individuals[J]. Mathematical and Computer Modelling, 2009,50:32-44.
  • 5Li Dan, Ma Wanbiao. Asymptotic properties of a HIV-1 infection model with time delay[J]. Mathematical Analysis and Applications, 2007,335:683-691.
  • 6Wonlyul Ko, Kimun Ryu. Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge[J]. Journal of Differential Equations, 2006,231:534-550.

同被引文献22

  • 1陈宁.具有吸引项的反应扩散型和拟抛物方程解的全局死核问题[J].纯粹数学与应用数学,2004,20(3):248-254. 被引量:1
  • 2Faria T. Stability and bifurcation for a delayed predator-prey model and the effect of diffusion[J]. J. Math. Appl., 2001,254:433-463.
  • 3Yan X P, Li W T. Hopf bifurcation and global periodic solutions in a delayed predator - prey system[J]. Appl. Math. Comput., 2006,177:427-445.
  • 4May R M. Time delay versus stability in population models with two and three trophic levels[J]. Ecology, 1973,4:315-325.
  • 5Hassard B, Kazarinoff D, Wan Y. Theory and Applications of Hopf Bifurcation[M]. Cambridge: Cambridge University Press~ 1981.
  • 6Meng X, Wei J. Stability and bifurcation of mutual system with time delay[J]. Chaos, Solitons and Fractals, 2004,21:729-40.
  • 7Hale J, Lunel S M. Introduction to Functional Differential Equations[M]. New York: Springer, 1993.
  • 8Ruan S, Wei J. On the zeros of transcendental functions with applications to stability of delay differential equations with two delays[J]. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 2003,10:863-874.
  • 9Bart Kosko. Adaptive bi-directional associative memories[J].{H}Applied Optics,1987,(23):4947-4960.
  • 10Bart Kosko. Bi-directional associative memories[J].IEEE Transaction on Systems Man and Cybernetis,1988,(01):49-60.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部