期刊文献+

小麦异源多倍体中亲本基因组相互作用产生快速基因组变异的ISSR标记分析 被引量:7

Rapid genomic changes induced by intergenomic interactions in allopolyploid wheat revealed by ISSR
下载PDF
导出
摘要 通过ISSR标记分析,研究了异源多倍体基因组的进化现象.结果表明,基因组组成和普通小麦相同的人工合成异源六倍体小麦,在形成早期发生了迅速、广泛、以非随机性为主的基因组变化,包括遗传变异———主要表现为序列变异和表观遗传变异———主要表现为DNA甲基化变异.而且异源六倍体小麦中来自父本的基因组比来自母本的基因组发生了更多的遗传和表观遗传变异.说明异源多倍体中不同亲本基因组之间的相互作用可能导致了变异的发生.这些变异不但有助于生物体恢复到二倍体的协调状态,而且产生新的遗传类型和影响表达的类型,促成了异源多倍体物种形成和进化成功. By using ISSR technology,it was found that rapid,extensive and mainly non-random genomic changes,including genetic and epigenetic changes,i.e.DNA methylation changes,occurred in the early generation of synthetic allohexaploid wheat whose genomic constitution is identical to that of natural common wheat.The paternally donated nuclear genome showed more changes than maternally donated one.Intergenomic interactions in allopolyploid probably lead to these genomic variations.The changes could not only lead to diploid-like harmonization,but also generate genetic and expression variability,thereby contributing to speciation and evolution of allopolyploid.
作者 邱天 庞劲松
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期124-128,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家杰出青年基金资助项目(30225003)
关键词 异源多倍体 人工合成六倍体小麦 基因组变化 进化 allopolyploid; synthetic allohexaploid wheat; genomic changes; evolution
  • 相关文献

参考文献3

二级参考文献115

  • 1Feldman, M., Liu, B., Segal, G., Abbo, S., Levy, A.A., and Vega, J.M. (1997). Rapid elimination of low-copy DNA sequences in polyploid wheat: A possible mechanism for differentiation of homoeologous chromosomes. Genetics 147: 1381-1387.
  • 2Finnegan, E.J. (2002). Epialleles--A source of random variation in times of stress. Curr. Opin. Plant Biol. 5: 101-106.
  • 3Gaeta, R.T., Pires, J.C., Iniguez-Luy, F., Leon, E., and Osborn, T.C. (2007). Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19: 3403-3417.
  • 4Geiman, T.M., and Robertson, K.D. (2002). Chromatin remodeling, histone modifications, and DNA methylation--How does it all fit together? J. Cell Biochem. 87: 117-125.
  • 5Gustafson, J.P., and Bennett, M. D. (1976). Preferential selection for wheat-rye substitutions in 42-chromosome Triticale. Crop Sci. 16: 688-693.
  • 6Hail, F., Liu, B., Fedak, G., and Liu, Z. (2004). Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor. Appl. Genet. 109: 1070-1076.
  • 7Han, F., Fedak, G., Guo, W., and Liu, B. (2005). Rapid and repeatable elimination of a parental genome-specific repeat (pGclR-1 a) in newly synthesized wheat allopolyploids. Genetics 170:1239-1245.
  • 8Han, EP., Fedak, G., Ouellet, T., and Liu, B. (2003). Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae. Genome 46: 716-723.
  • 9He, P., Friebe, B.R., Gill, B.S., and Zhou, J.M. (2003). Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Mol. Biol. 52: 401-414.
  • 10Hegarty, M., and Hiscock, S. (2007). Polyploidy: Doubling up for evolutionary success. Curr. Biol. 17:R927-R929.

共引文献86

同被引文献122

引证文献7

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部