期刊文献+

影响铁渗透反应格栅修复地下水中氯代烃长期运行性能的研究进展 被引量:2

The factors impacting on long-term performance of iron permeable reactive barriers for remediation of chlorinated hydrocarbons in groundwater:A review
下载PDF
导出
摘要 铁渗透反应格栅技术修复地下水中氯代烃,尤其是四氯乙烯和三氯乙烯,已日臻成熟;近年,研究者对该技术的关注已集中到影响格栅长期运行性能的因素上。文章从地下水的常量化学组分、铁表面形成的矿物沉淀、铁渗透反应格栅中的微生物和共存有机污染物4个方面,对影响其长期运行性能的因素进行了综述。分析表明,铁表面矿物的长期积累是降低格栅长期运行性能的主要因素,并对该技术的发展进行了展望。 Iron-based permeable reactive barriers(Fe0-PRBs) for in-situ groundwater remediation of chlorinated hydrocarbons such as perchloroethylene and trichloroethylene have become a mature technology.Results published recently focus on the evaluation of long-term performance of Fe0-PRBs.This paper reviews the factors impacting on the long-term performance of Fe0-PRBs in treating chlorinated solvents,including groundwater chemistry,mineral precipitates formed on iron surface,microbes within Fe0-PRBs and other coexistent organic pollutants.It is mineral precipitates accumulating within Fe0-PRBs that become the predominant factor to decrease barriers' reactivity over time.Moreover,future research on multimedia permeable reactive barriers and sequential ones based on Fe0-PRBs have been recommended.
出处 《地学前缘》 EI CAS CSCD 北大核心 2011年第3期331-338,共8页 Earth Science Frontiers
基金 国家高技术研究发展计划"863"项目(2007AA06A410)
关键词 粒状铁 地下水修复 氯代烃 渗透反应格栅 长期运行性能 granular iron groundwater remediation chlorinated hydrocarbon permeable reactive barrier(PRB) long-term performance
  • 相关文献

参考文献54

  • 1Sweeny K H, Fischer J R. Reductive degradation of halogenafed pesticides: US, 3640821[P]. [1972-02-08].
  • 2Interstate Technology and Regulatory Council. Permeable Reactive Barriers: Lessons Learned/New Directions[R/OL]. 2005[2008-04-18]. http: //www. itrcweb, org/guidancedocument, asp? TID=5.
  • 3Powell R M, Powell P D, Puls R W. Economic Analysis of the Implementation of Permeable Reactive Barriers for Remediation of Contaminated Ground Water[R/OL]. Cincinnati: US Environmental Protection Agency, 2002 E2008- 04-20]. hHp: //www. epa. gov/ada/pubs/reports/600R02034, html.
  • 4D'Andrea P, I.ai K C K, Kjeldsen P, et al. Effects of groundwater inorganies on the reductive deehlorination of TCE by zero-valentiron[J]. Water, Air and Soil Pollution, 2005, 162: 401 -420.
  • 5I.iu T, Tsang D C W, Lo I M C. Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic add.. Iron dissolution and humic acid adsorption[J]. Environmental Science and Technology, 2008, 42(6) : 2092-2098.
  • 6Agrawal A, Ferguson W J, Gardner B O, et al. Effects of carbonate species on the kinetics of dechlorination of 1, 1, 1 trichloroethane by zero-valent iron[J]. Environmental Science and Technology, 2002, 36(20): 4326-4333.
  • 7Parbs A, Ebert M, Dahmke A. Longterm effects of dissolved carbonate species on the degradation of trichloroethylene by zerovalentiron[J]. Environmental Science and Technology, 2007, 41:291-296.
  • 8Tamara M L, Butler E C. Effects of iron purity and.ground water characteristics on rates and products in the degradation of carbon tetrachloride by iron metal[J]. Environmental Science and Technology, 2004, 38:1866-1876.
  • 9Jcen S W, Gillham R W, Blowes D W. Effects of carbonate precipitates on long-term performance of granular iron for reductive dechlorination of TCE[J]. Environmental Science and Technology, 2006, 40(20): 6432 -6437.
  • 10Phillips D H, Gu B, Watson D B, et al. Performance evaluation of a zerovalent iron reactive barrier: Mineralogical characteristics[J]. Environmental Science and Technology, 2000, 34(19):4169-4176.

二级参考文献83

  • 1何江涛,李烨,刘石,陈鸿汉.浅层地下水氯代烃污染的天然生物降解[J].环境科学,2005,26(2):121-125. 被引量:34
  • 2Deng B L; Campbell T J, Burris D R. Hydrocarbon formation in metallic iron/water systems[J]. Environ Sci Technol, 1997, 31(4): 1185-1190.
  • 3Hara J, Ito H, Suto K, et al. Kinetics of trichloroethene dechlorination with iron powder [J]. Water Research, 2005, 39:1165-1173.
  • 4Li Z H, Willms C, AlleyJ, et al. A shiftin pathway ofironmediated perchloroethylene reduction in the presence of sorbed surfaetant--a column study [J]. Water Research, 2006, 40(20): 3811-3819.
  • 5Allen-King R M, Halket R M, Burris D R. Reductive transformation and sorption of cis-and trans-1,2-dichloroethene in a metallic iron-water system[J]. Environmental Toxicology and Chemistry, 1997, 16(3).. 424-429.
  • 6Muftikian R, Femando Q, Korte N. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water[J]. Water Research, 1995, 29(10): 2434- 2439.
  • 7Schafer D, KOber R, Dahmke A. Competing TCE and cis- DCE degradation kinetics by zero-valent iron--experimental results and numerical simulation[J]. Journal of Contaminant Hydrology, 2003, 65(3-4): 183-202.
  • 8U.S. Environmental Protection Agency. 2006 Edition of the Drinking Water Standards and Health Advisories[M]. Office of Water, Washington, DC: EPA 822-R-06-013, 2006.
  • 9Gao J W, Skeen R S. Glucose-induced biodegradation of cisdichloroethylene under aerobic conditions[ J ]. Water Research, 1999, 33(12): 2789-2796.
  • 10Schafer A, Bouwer E J. Toluene induced co-metabolism of cis-1,2-dichloroethylene and vinyl chloride under conditions expected down gradient of a permeable Fe (0) barrier [J ]. Water Research, 2000, 34(13): 3391-3399.

共引文献8

同被引文献32

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部