期刊文献+

基于动态BP神经网络PID的AUV自适应控制 被引量:2

AUV Adpative Control Based on Dynamic BP Neural Network PID
下载PDF
导出
摘要 由于自治水下机器人(AUV)动力学的非线性、模型参数以及海洋环境扰动的不确定性,基于常规PID控制的AUV性能通常不够理想。文中应用动态BP神经网络对PID控制器的参数进行在线调整,从而使PID控制器具有自适应性以适应AUV工况的变化,仿真结果验证了本策略的有效性。 The complexity of sea environment and the uncertainty of AUV model to difficulties of AUV control. The tradition PID controller of the AUV performance is not well. In this paper, the dynamic BP neural network PID controller parameters on-line adjustments, so that the adaptive PID controller has to adapt to changes in working conditions AUV simulation results validate the effectiveness of this strategy.
作者 惠超 吕成兴
出处 《物流工程与管理》 2011年第5期118-119,共2页 Logistics Engineering and Management
关键词 BP神经网络 PID控制 水下自治机器人 BP neural network PID Control AUV
  • 相关文献

参考文献5

二级参考文献12

  • 1赵国良,季鲁慧,丛望.潜艇空间运动的滑动控制[J].控制理论与应用,1994,11(3):350-355. 被引量:7
  • 2熊华胜,边信黔,施小成.积分变结构控制原理在AUV航向控制中的应用仿真[J].船舶工程,2005,27(5):30-33. 被引量:6
  • 3王丰尧.滑模变结构控制[M].北京:机械工业出版社,1998..
  • 4J. Yuh. A neutral net controller for underwater robotic vehicles [J]. IEEE Journal of Oceanic Engineering, 1990, 15 (3):161-166.
  • 5J. Yuh and K.V. Gonugunta. Learning control of underwater robotic vehicles [C]//Proceedings IEEE Infl Conf on Robotics and Automation, 1993:106-111.
  • 6J. Yuh R. Lakshmi. An intelligent control system for remotely operated vehicles [J]. IEEE Journal of Oceanic Engineering, 1993, 18 (1): 55-62.
  • 7J. Yuh. Learning control for underwater robotic vehicles [J]. IEEE Control System Magazine, 1994, 14(2): 39-46.
  • 8N. Seube. Neural network learning rules for control: application to AUV tracking control [C]//Proceedmgs of the 1991 IEEE Conference on Neural Networksfor Ocean Engmeenng, 1991:185-196.
  • 9K Venugopal, R.Sudhakar, A. Pandya. On-line learning conlrol of autonomous underwater vehicles using feed forward neural networks [J]. IEEE Journal of Oceanic Engineering, 1992, 17: 308-319.
  • 10I. Yamamoto. Application of neural network to marine vehicle[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks, 1995: 220-224.

共引文献52

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部