期刊文献+

基于非结构化P2P网络用户模型的协同过滤推荐机制 被引量:2

A collaborative filtering recommendation mechanism based on user profile in unstructured P2P networks
原文传递
导出
摘要 协同过滤是当前应用在信息推荐系统中最成功的技术之一。但随着用户数量和所需过滤信息的增加,计算复杂度迅速增长,大多数推荐系统都因集中式的体系结构而面临可扩展性差的问题。本文提出了一种基于非结构化P2P网络的协同过滤推荐机制,采用基于词汇链的方法构建资源对象描述向量,建立由偏好资源对象集合构成的用户模型,并且根据用户的兴趣变化,通过动态邻居重组的方法获得实时的个性化推荐。实验数据表明采用基于非结构化P2P网络的协同过滤推荐机制较传统集中式推荐方案有更好的可扩展性和预测准确性。 Nowadays,collaborative filtering is one of the most successful technologies applyed in information recommender systems.However,with increase of the number of users and the amount of information needed to filter,the systems′ computational complexity quickly increases,and most centralized recommender systems have to face the low scalability problem.To solve the scalability problem of the recommender systems,a distributed collaborative filtering recommendation mechanism with an unstructured P2P architecture is proposed.In the recommendation mechanism,the content of resource is represented by a vector according to the lexical chain method,and then the user profile can be represented by a preferred resource set.In addition,with the change of the user′s interest,the proposed mechanism also utilizes dynamic neighbor peer set reformation to gain a real time personalized recommendation.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第5期28-33,共6页 Journal of Shandong University(Natural Science)
基金 河北省科技支撑计划项目(072135208) 秦皇岛市科学技术研究与发展计划项目(200901A041)
关键词 P2P 协同过滤 用户模型 个性化推荐 P2P; collaborative filtering; user profile; personalized recommendation;
  • 相关文献

参考文献13

  • 1Yehuda Koren. Collaborative filtering with temporal dy- namics [ J ]. Communications of the ACM, 2010, 53(4) .89-97.
  • 2YUAN Fuyong, LIU Jian, YIN Chunxia. A scalable search algorithm on unstructured P2P networks [ C ]// Proceedings of the SNPD' 07. Washington: IEEE Com- puter Society Press, 2007: 199-204.
  • 3许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:545
  • 4JIANG Zhonga, XUE Li. Unified collaborative filtering model based on combination of latent features [ J ]. Expert Systems with Applications, 2010, 37 ( 8 ) : 5666-5672.
  • 5ZHANG Huiying, YIN Chunxia, LIU Jian, et al. PNRC: personalized news recommendation mechanism based on collaborative filtering in unstructured P2P networks [ J ]. ICIC Express Letters, 2009, 3 (3B) :561-566.
  • 6JAE K K, HYEA K K, YOON H C. A user-oriented contents recommendation system in peer-to-peer architec- ture [ J ]. Expert Systems with Applications, 2008, 34 ( 1 ) :300-312.
  • 7Meghana Marathe, Graeme Hirst. Lexical chains using distributional measures of concept distance [ J ]. Lecture Notes in Computer Science, 2010, 6008:291-302.
  • 8Office of Communications of Princeton University. Word- Net [EB/OL ]. [ 2010-10-05 ]. http://wordnet.prince- ton. edu.
  • 9LI Shaozi, ZHOU Changle, CHEN Huowang. Research on content-based text retrieval and collaborative filtering in hybrid peer-to-peer networks [ J ]. Lecture Notes in Computer Science, 2005, 3168:417-426.
  • 10Wu Leejay, Faloutsos Christos, Sycara Katia P. FAL- CON: feedback adaptive loop for content-based retrieval [ C ]//Proceedings of the 26th International Conference on Very Large Data Bases. Cairo: Morgan Kaufmann, 2000 : 297-306.

二级参考文献72

  • 1Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 2Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 3Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 4Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 5Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 6Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 8Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 9Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.
  • 10Schafer JB, Konstan J, Riedl J. Recommender systems in e-commerce. In: Proc. of the 1 st ACM Conf. on Electronic Commerce. New York: ACM Press, 1999. 158-166.

共引文献544

同被引文献22

  • 1G6rlitz O, Sizov S, Staab S.PINTS: Peer-to-peer Infras- tructure for Tagging SystemiC]. In: Proceedings of the 7th International Conference on Peer-to-Peer Systems (IPTPS). Berkeley, CA, USA: USENIX Association, 2008.
  • 2Fokker J, Pouwelse J, Buntine W. Tag-Based Navigation for Peer-to-Peer Wikipedia[OL].[2013 - 10-20].http://bioinformatics. tudelft.nl/sites/de fault/files/final_p2pwikipedia.pdf.
  • 3Dattolo A, Ferrara F, Tasso C. Neighbor Selection and Recommendations in Social Bookmarking Tools [C]. In: Proceedings of the 9th International Conference on Intelligent Systems Design and Applications. 2009: 267-272.
  • 4Chen H, Dumais S.Bringing Order to the Web: Automatically Categorizing Search Results[C]. In:Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 2000: 145-152.
  • 5Shiratsuchi K, Yoshii S, Furukawa M. Finding Unknown Interests Utilizing the Wisdom of Crowds in a Social Bookmark Service[C]. In: Proceedings of the 2006 IEEE/ WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. Washington DC: IEEE Computer Society, 2006:421-424.
  • 6Van Setten M, Brussee R, Van Vliet H, et al.On the Importance of "Who Tagged What" [C].In:Proceedings of the Workshop on the Social Navigation and Community Based Adaptation Technologies at AH 2006, Dublin, Ireland. 2006.
  • 7Au Yeung C, Gibbins N, Shadbolt N. A Study of User Profile Generation from Folksonomies [C]. In: Proceedings of the Workshop on Social Web and Knowledge Management at the 17th International Conference on World Wide Web,Beijing, China,2008.
  • 8Cheng Y, Qiu G, Bu J J, et al. Model Bloggers'Interests Based on Forgetting Mechanism[C]. In: Proceedings of the 17th International Conference on World Wide Web. New York: ACM Press, 2008:1129-1130.
  • 9鲁欣,周伟锋.基于认知心理互动的网络信息组织的思考[J].图书馆学研究,2008(5):30-33. 被引量:12
  • 10陈洁,司莉.社会分类法(Folksonomy)特点及其应用研究[J].图书与情报,2008(3):27-30. 被引量:17

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部