期刊文献+

动态网络中基于局部介数的重叠社区发现算法 被引量:2

A dynamic network overlapping communities detecting algorithm based on local betweenness
原文传递
导出
摘要 针对现有静态网络社区发现算法的失真和动态网络社区发现算法时间复杂度较高的问题,本文提出了一种动态网络中的重叠社区发现算法。在网络中,边介数最大的边或分割介数最大的节点是网络中的关键边或点,即联系最不紧密的边或节点,因此,该算法利用去除最大边介数的边和分裂最大分割介数的节点的方法,并将网络社区的动态变化和重叠性考虑在内进行社区发现。最后利用模块度对社区发现进行控制,使发现的社区结构更加合理。 Aimed at the problem of distortion in the static network and higher time complexity in the dynamic network,a overlap community detecting algorithm for a dynamic network is proposed,in which the idea is that the edge of the maximum edge betweenness or node of the maximum split betweenness is the key link edge or node.Considering the dynamics and overlapping in the network community,communities found is achieved,based on removing the edge of maximum edge betweenness or dividing the point of maximum split betweenness.Finally,under the control of community detection by modularity,the community structure becomes more reasonable.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第5期86-90,共5页 Journal of Shandong University(Natural Science)
基金 山西省回国留学基金资助项目(2010-31)
关键词 动态网络 重叠社区 边(分割)介数 模块度 dynamic network; overlap community; edge(split)betweenness; modularity;
  • 相关文献

参考文献14

  • 1CAPOCCI A, SERVEDIO V D P, CALDARELLI G, et al. Detecting communities in large networks [ J ]. Physica A, 2005, 352:669-676.
  • 2BOCCALETrI S, LATORA V, MORENO Y, et al. Complex networks: structure and dynamics [ J ]. Plays Rep, 2006, 424 : 175-308.
  • 3NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks [ J ]. Phys Rev E, 2004, 69(2) :026113.1-026113.15.
  • 4RADICCHI F, CASTELLANO C, CECCONI F, et al. Defining and identifying communities in networks [ J ]. Proceedings of the National Academy of Sciences, 2004, 101 (9) :2658-2663.
  • 5REICHARDT J, BOMHOLDT S. Statistical mechanics of community detection [ J ]. Phys Rev E, 2006, 74 ( 1 ) : 016110. 1-016110. 14.
  • 6PONS P, LATAPY M. Computing communities in large networks using random walks [ J ]. Lecture Notes in Com- puter Science, 2005, 3733:284-293.
  • 7NEWMAN M E J. Fast algorithm for detecting communi- ty structure in networks [ J ]. Phys Rev E, 2004, 69 (6) : 066113.1-066113.5.
  • 8TANTIPATHANANANDH C, BERGER-WOLF T, DA- VID K. A framework for community identification of dy-namic social networks[ C ]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD07). New York: ACM Press, 2007: 609-615.
  • 9LIN Yuru, CHI Yun, ZHU Shenghuo, et al. Facemet: a framework for analyzing communities and their evolutions in dynamic networks[ C ]// Proceeding of the 17th Inter- national Conference on World Wide Web. [ S. l ]: [ s. n. ] , 2008: 6854594.
  • 10PALLA G, DERENYI I, FARKAS I. Uncovering the o- verlapping community structure of complex networks in nature and society[J]. Nature, 2005, 437:814-818.

同被引文献21

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2Sandvig J J,Mobasher B, Robin Burke. Robustness of collaborative recommendation based on association rule mining[C]// Proceedings of the 2007 ACM conference on Recommendersystems,2007:105-112.
  • 3Michael J Pazzani, Daniel Billsus. The Adaptive Web [M]. USA,New york:Springer Berlin Heidelberg,2007:325-344.
  • 4IE Shparlinski. On some weighted Average Values of L-function [J]. Bulletin of the Australian Mathematical Society,2009, 79:183-186.
  • 5Li wang. SoFA: An expert-driven, self-organization peerto-peer semantic communities for network resource management [J]. Expert Systems With Applications, 2011,38 (1) : 94-105.
  • 6W Aref, M Elfeky. A elmagarmid, incremental, online and merge mining of partial periodic patterns in time-series databas- es[J]. 1EEE Transactions Knowledge and Data Engineering, 2004,16 (3) : 332-342.
  • 7Lahiri M, Berger-Wolf T. Periodic subgraph mining in dynamic networks[J]. Knowledge and Information Systems, 2010 (24) :467-497.
  • 8Newman M EJ. Finding community structure in networks using the eigenvectors of matrices[J] . Physical Review E, 2006,74: 03104- 1,036104-19.
  • 9ScottJ. Social network analysis: a handbook[MJ. Sage Publica?tions, London ,2000.
  • 10Newman M EJ. Detecting community structure in networks[J] . Eur. Phys.J. B,2004,38:321-330.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部