期刊文献+

一种求解属性约简优化的协同粒子群算法 被引量:5

Research of cooperative PSO for attribute reduction optimization
原文传递
导出
摘要 针对粗糙属性约简优化问题,利用粒子群寻求最优解的优势,提出一种改进的粗糙集属性约简优化的协同粒子群算法(AR-CPSO)。在最优属性寻求过程中,该算法使粒子群在属性空间通过约简集向量的分解和邻域簇的协同学习提高其寻优能力,并利用自适应约束强化罚函数较好地收敛到最优目标属性约简集。该算法能始终保持种群的多样性、协作性,并避免过早地陷入局部最优。相关仿真实验表明,AR-CPSO算法能有效地找到全局最优属性约简集,具有较强的属性协同约简优化性能。 According to the problem of attribute reduction optimization,an improved cooperative PSO algorithm named AR-CPSO for attribute reduction optimization was proposed based on some special optimization advantages of PSO.In the process of searching for the minimal attribute sets,particle swarms could improve its optimization ability by splitting reduction vectors into some parts and learning some social cognition from cooperative neighbour clusters in the attribute spaces.The adaptive reinforcement penalty function method was involved in the algorithm to get the optimization reduction sets.AR-CPSO could maintain the diversity and cooperation of the populations.Furthermore,it could break away from the local optimization.Experimental results showed that AR-CPSO had an outstanding ability to find the global optimization and was better in cooperative attribute reduction.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第5期97-102,共6页 Journal of Shandong University(Natural Science)
基金 国家高技术研究发展计划(863计划)重点资助项目(2006AA12A106) 南通大学杏林学院自然科学科研项目(2010K123) 苏州大学江苏省计算机信息处理技术重点实验室开放课题项目(KJS1023) 江苏省自然科学基金研究项目(BK2010280)
关键词 粒子群优化 向量分解 协同学习 属性约简 自适应罚函数 particle swarm optimization; vector split; cooperation learn; attribute reduction; adaptive penalty function;
  • 相关文献

参考文献15

  • 1PAWLAK Z. Rough sets [ J ]. International Journal of Computer and Information Sciences, 1982,11:341-356.
  • 2PAWLAK Z. Rough set approach to multi-attriute deci- sion analysis [ J ]. European Journal of Operational Re- search, 1994, 77:443-459.
  • 3刘少辉,盛秋戬,吴斌,史忠植,胡斐.Rough集高效算法的研究[J].计算机学报,2003,26(5):524-529. 被引量:271
  • 4胡峰,王国胤.属性序下的快速约简算法[J].计算机学报,2007,30(8):1429-1435. 被引量:49
  • 5WONG S K M, ZIARKO W. On optimal decision rules in decision tables[ J]. Bulletin of Polish Academy of Sci- ence, 1985, 33( 11 ) :693-696.
  • 6KENNEDY J, EBERHART R C. Particle swarm optimi- zation [ C ]// Proceedings of IEEE International Confer- ence on Neural Networks. Washington: IEEE Computer Society, 1995: 1942-1948.
  • 7STEFAN Janson, Martin Middendorf. A hierarchical par- ticle swarm optimizer and its adaptive variant[ J ]. IEEE Transactions on Systems, Man, and Cybernetics, 2005, 35(6) :1272-1282.
  • 8DAI Jianhua, CHEN Weidong, GUO Hongying, et al. Particles warm algorithm forminimal attribute reduction of decision data table [ C ]// Processing of the 1 st Interna- tional Multisymposiums on Computer and Computational Science. Washington: IEEE Computer Society Press, 2006 : 3021-3025.
  • 9YUE Benxian, YAO Weihong, Abraham Ajith, et al. A new rough set reduct algorithm based on particle swarm optimization [ J ]. Lecture Notes in Computer Science, 2007, 4527:397-406.
  • 10WANG Xiangyang, WAN Wanggen, YU Xiaoqing. Rough set approximate entropy reducts with order based particle swarm optimization[ C]// Proceedings of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation ( GEC' 09 ). New York: ACM Press, 2009 : 553-559.

二级参考文献20

共引文献330

同被引文献73

  • 1周广通,尹义龙,郭文鹃,任春晓.基于协同训练的指纹图像分割算法[J].山东大学学报(工学版),2009,39(1):22-26. 被引量:3
  • 2苗夺谦,张红云,李道国,王真.基于主曲线的脱机手写数字识别[J].电子学报,2005,33(9):1639-1643. 被引量:14
  • 3林洁,杨立才,吴晓晴,叶杨.求解动态路径诱导K路最短问题的人工免疫优化方法[J].山东大学学报(工学版),2007,37(2):103-108. 被引量:6
  • 4PAWLAK Z.Rough sets[J].International Journal of In-formation and Computer Sciences,1982,11(1):341-356.
  • 5PAWLAK Z.Rough set approach to muli-attriute decisionanalysis[J].European Journal of Operational Research,1994,77:443-459.
  • 6KRYSZKIEWICZ M.Comparative studies of alternativetype of know ledge reduction in inconsistent systems[J].International Journal of Intelligent Systems,2001,16(1):105-120.
  • 7WANG G Y,WANG Y.3DM:domain-oriented data-driven data mining[J].Fundamenta Informaticae,2009,90(4):395-426.
  • 8CHEN Y M,MIAO D Q,WANG R Z.A rough set ap-proach to feature selection based on ant colony optimiza-tion[J].Pattern Recognition Letters,2010,31(3):226-233.
  • 9HU Q H,YU D R,XIE Z X.Neighborhood classifiers[J].Expert Systems with Applications,2008,34:866-876.
  • 10JIANG F,SUI Y F,CAO C G.Some issues about outlierdetection in rough set theory[J].Expert Systems w ithApplications,2009,36(3):4680-4687.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部