期刊文献+

基于分布式强化学习的高速公路控制模型 被引量:1

A Freeway Traffic Flow Control Model Based on Distributed Reinforcement Learning
下载PDF
导出
摘要 针对公路交通流非线性、不确定性和模糊性特点,提出了面向控制的交通网络宏观动态离散模型,并且引入分布式强化学习来解决交通网络的控制与诱导问题。以传统网络交通流模型Metanet为基础,对其作了改进,引入起讫点的因素到模型中,提出基于OD的网络交通流动态模型Metanet-OD。根据交通网络的特点,将分布式强化学习DRL引入到交通网络中,进行匝道控制和可变显示牌的诱导控制,设定了强化学习的动作空间,并给出了DRL算法。在仿真试验中对控制效果进行了验证。 A control-oriented macroscopic dynamic traffic flow discrete model applicable to the nonlinear,uncertain,fuzzy system of freeway traffic was proposed and discussed.Distributed Reinforcement Learning(DRL) was introduced to control and guide the traffic system.The traditional freeway traffic model Metanet was upgraded to an improved Metanet-OD within which the origins and destinations of freeway traffic was taken into account.The DRL was used in ramp metering and VMS guidance for freeway network.The actions space of DRL was designed and the DRL algorithm was presented.The control efficiency of the proposed model was also verified with simulation.
出处 《交通信息与安全》 2011年第3期24-28,共5页 Journal of Transport Information and Safety
基金 国家自然科学基金项目(批准号:60134010)资助
关键词 交通工程 交通流模型 强化学习 高速公路 traffic engineering traffic flow model distributed reinforcement learning freeway
  • 相关文献

参考文献11

  • 1Francois D. Development and Evaluation of a distributed system for the real-time control of signal- ized networks [D]. Waterloo, Ontario:University of Waterloo, 1998.
  • 2Cao Y J, Ireson N, Bull L, et al. Distributed learn- ing control of traffic signals [C]//Proceedings of EvoWorkshops' 2000, Scotland, Uk : Universitg Trier Edinburgh, 1803 : 159-160.
  • 3Yang X. Assessment of a self-organizing distributed traffic information system: modeling and simulation [D]. Irvine: University Of California,2003.
  • 4Camponogara E, Jr W K. Distributed learning a- gents in urban traffic control[C]//Beja, Portugal: Proceedings of EPIA'2003, the portuguese Association for Artificial Intelligence (APPIA), 2003: 324- 335.
  • 5Bazzan A L C. A distributed approach for coordina tion of traffic signal agents[J].Autonomous A gents and Multi-Agent Systems, 2005,10(1) : 131 -164.
  • 6欧海涛,张卫东,许晓鸣.基于RMM和贝叶斯学习的城市交通多智能体系统[J].控制与决策,2001,16(3):291-295. 被引量:16
  • 7马万经,林瑜,杨晓光.多相位信号控制交叉口行人相位设置方法[J].交通运输工程学报,2004,4(2):103-106. 被引量:26
  • 8承向军,杜鹏,杨肇夏.基于多智能体的分布式交通信号协调控制方法[J].系统工程理论与实践,2005,25(8):130-135. 被引量:15
  • 9承向军,杨肇夏.一种分布式交通信号控制方法及仿真实现[J].系统仿真学报,2005,17(8):1970-1973. 被引量:8
  • 10Kotsialos A, Papageorgiou M. Traffic flow modeling of large-scale motorway networks using the macroscopic modeling tool Metanet [J].IEEE Trans. on ITS, 2002,3(4) :282-292.

二级参考文献16

  • 1承向军,贺振欢,杨肇夏.基于遗传算法的交通信号机器学习控制方法[J].系统工程理论与实践,2004,24(8):130-135. 被引量:13
  • 2承向军,杨肇夏.一种交通信号自学习控制方法及仿真实现[J].系统仿真学报,2004,16(7):1519-1524. 被引量:5
  • 3[3]王浩.交通信号相位相序问题研究[D].上海:同济大学,2002.
  • 4[5]孙明正.信号控制交叉口自行车交通设计理论研究[D].上海:同济大学,2003.
  • 5[7]任福田.道路通行能力手册(HCM)[M].北京:中国建筑工业出版社,1999.
  • 6Gerhard Weiss. Multiagent systems: a modern approach to distributed artificial intelligence [A]. Cambridge, Mass. MIT Press, 1999.
  • 7Hakim Laichour, etc. Traffic control assistance in connection nodes: multi-agent applications in urban transport systems. [A] International Workshop on Intelligent Data Application and Advanced Computing System: Technology and Application. 1-4 July 2001, Foros, Ukraine: 133-137.
  • 8Jeffrey L Adler, Victor J Blue. A cooperative multi-agent transportation management and route guidance system [J]. Transportation Research Part C, 2002, 10: 433-454.
  • 9John France, Ali A Ghorbani. A Multiagent System for Optimizing Urban Traffic. [A] Proceedings of the IEEE/WIC International Conference on Intelligent Agent Technology (IAT'03), 2003 IEEE.
  • 10Gerhard Weiss. Multiagent systems: a modern approach to distributed artificial intelligence[A]. Cambridge, Mass.MIT Press, 1999.

共引文献60

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部