期刊文献+

基于能效优化的两足机器人步态控制方方法法 被引量:5

Gait control based on energy-efficiency optimization for biped robots
下载PDF
导出
摘要 针对高能耗导致的两足机器人实用化障碍,提出了一种全新的、系统化的步态能效优化控制方法.基于两足机器人运动的重要能耗指标(平均功率、平均功率偏差、平均力矩损耗),提出了能耗预估策略和能效优化算法,获取了零力矩点(ZMP)稳定区域内的能耗极小值.沿着能耗极小值所对应的上体轨迹对机器人步态实施能效优化控制,最终获得满足ZMP稳定判据的低能耗步态.仿真结果证明,该方法能够有效降低机器人能耗并保持其稳定性. A gait control based on energy-efficiency optimization is proposed for solving the fatal problem of high energy consumption in practical application of biped robots.A strategy of energy consumption estimation(ECE) and an algorithm of energy-efficiency optimization are proposed based on three important indices of energy consumption for biped locomo-tion average mechanical power,mean power derivation and mean torque consumption.Controlling the gait of the robot along the trunk trajectory which corresponds to the minimal energy consumption in the zero moment point(ZMP) stability domain,we obtain the energy-efficiency gait guaranteeing the ZMP criterion.Simulation results show the validity of the method.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第5期667-674,共8页 Control Theory & Applications
基金 国家自然科学基金资助项目(U0735003 60974047) 广东省自然科学基金资助项目(8351009001000002 9151009001000011) 广东省科技计划资助项目(2009B010900051) 教育部霍英东青年教师基金资助项目(121061) 广东省高层次人才计划资助项目
关键词 能量效率 两足机器人 零力矩点 步态控制 energy efficiency biped robot zero moment point gait control
  • 相关文献

参考文献21

  • 1MCGEER T. Passive dynamic walking[J]. International Journal of Robotics Research, 1990, 9(2): 62 - 82.
  • 2BRAUN D J, GOLDFARB M. A control approach for actuated dy- namic walking in biped robots[J]. IEEE Transactions on Robotics, 2009, 25 (6): 1292- 1303.
  • 3SCHWAB A, WISSE M. Basin of attraction of the simplest walking model[C] //Proceedings of International Conference on Noise and Vibration. New York: American Society of Mechanical Engineers, 2001:1-9.
  • 4GOSWAMI D, VADAKKEPAT E Planar bipedal jumping gaits with stable landing[J]. IEEE Transactions on Robotics, 2009, 25(5): 1030 - 1046.
  • 5KIM D W, SEO S J, SILVA C W. Use of support vector regression in stable trajectory generation for walking humanoid robots[J]. Elec- tronics and Telecommunications Research Institute Journal, 2009, 31(5): 565 - 575.
  • 6ENDO G, MORIMOTO J, MATSUBARA T. Learning CPG-based biped locomotion with a policy gradient method: Application to a hu- manoid robot[J]. International Journal of Robotics Research, 2008, 27(2): 213 - 228.
  • 7ERBATUR K, KURT O. Natural ZMP trajectories for biped robot reference generation[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 835 - 845.
  • 8VUNDAVILLI P R, PRATIHAR D K. Soft computing-based gait planners for a dynamically balanced biped robot negotiating sloping surfaces[J]. AppliedSofl Computing, 2009, 9(1): 191 - 208.
  • 9DARIUSH B, GIENGER M, ARUMBAKKAM A. Online transfer of human motion to humanoids[J]. International Journal of Humanoid Robotics, 2009, 6(2): 265 - 289.
  • 10VANDERBORGHT B, VAN HAM R, VERRELST B. Overview o the lucy project: dynamic stabilization of a biped powered by pneu matic artificial muscles[J]. Advanced Robotics, 2008, 22(10): 1027 - 1051.

二级参考文献16

  • 1蔡自兵.机器人学[M].北京:清华大学出版社,2000.106-189.
  • 2Sardain P, Rostami M, Thomas E, et al. Biped robots: correlations between technological design and dynamic behavior [J]. Pergamon Control Engineering Practice,1999,7(4):401-411.
  • 3Sardain P, Rostami M, Bessonnet G. An anthropomorphic biped robot, dynamic concepts and technological design[J].IEEE Transactions on System Man and Cybernetics, 1998,28(6):823-838.
  • 4Kuffner J J Jr. Dynamically-stable motion planning for humanoid robots[J]. Kluwer Autonomous Robots, 2002,12(5):105-118.
  • 5Huang Q, Shuuji, Noriho, et al. A high stability, smooth walking pattern for a biped robot [A].Proceedings of the 1999 IEEE International Conference on Robotics & Automation [C]. Detroit: IEEE Robotics and Automation Society, 1999.65-71.
  • 6Zhao W F, Wu G, Sommer H J. Closed-form kinematics for a spatial closed-chain mechanism modeling biped stance[J]. Pergamon Mech Mach Theory , 1998,33(4) :379-387.
  • 7Fumio, Masayuki, Hiroehika. Action acquisition framework for humanoid robots based on kenematics and dynamics adaptation[A]. Proceedings of the 1999 IEEE International Conference on Robotics & Automation [C]. Detroit: IEEE Robotics and Automation Society, 1999. 1038-1043.
  • 8Furuta T, Tawam T, Okumura Y, et al. Design and construction of a series of compact humanoid robots and development of biped walk control strategies [J]. Elseiver Robotics and Autonomous Systems, 2001,37(3):81-100.
  • 9Park J H, Chung H. Hybrid control for biped robots using impedance control and computed-torque control [A]. Proceedings of the 1999 IEEE International Conference on Robotics & Automation [C]. Detroit: IEEE Robotics and Automation Society, 1999. 1365-1370.
  • 10Rigatos G G, Tzafestas C S, Tazfestas S G. Mobile robot motion control in partially unknown environments using asliding-mode fuzzy-logic controller[J]. Elseiver Robrtics and Autonomous Systems. 2000.33(4):1-11.

共引文献14

同被引文献32

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部