期刊文献+

说话人识别中改进的MFCC参数提取方法 被引量:6

An Improved Method of MFCC Parameter Extraction in Speaker Recognition
下载PDF
导出
摘要 在说话人识别技术中,特征参数的提取对语音训练和识别有着非常重要的作用。而Mel频标倒谱系数MFCC是一种常用的特征,它能对语音信号进行分析处理,去除对语音识别无关紧要的冗余信息,获得影响语音识别的重要信息。同时由于语音信号具有时变和混沌特性,以非线性随机共振理论和人类对听觉的理解为基础,提出了一种基于随机共振的MFCC特征参数提取方法。通过实验比较两种方法的结果,论证了改进方法的可行性以及优越性,为说话人识别技术中特征参数提取提供了一条新的研究方向。 Speech feature parameter extraction is an very important part of the speech recognition system,especially in speech training and recognition.Mel frequency cepstrum coefficient(MFCC) is a common feature,It can analysis and process speech signal,remove redundant information in speech recognition,and gain important information which influence speech recognition.Owing to time-varying and chaotic characteristic of voice signal,a improved MFCC feature extraction method based on nonlinear stochastic resonance theory is proposed.By comparison results of two methods,it is proved that the improved one is practicable and more superior which provides a new direction of speech feature parameter extraction in speech recognition.
作者 何朝霞 潘平
出处 《科学技术与工程》 2011年第18期4215-4218,4227,共5页 Science Technology and Engineering
基金 国家科技计划基金资助项目(2008RR0003) 贵州省国际科技合作计划基金资助项目([2009]700109 [2009]700125)资助
关键词 说话人识别 特征提取 MFCC参数 随机共振 speech recognition feature extraction MFCC stochastic resonance
  • 相关文献

参考文献7

二级参考文献32

共引文献24

同被引文献37

  • 1徐舜,陈绍荣,刘郁林.基于非线性时频掩蔽的语音盲分离方法[J].声学学报,2007,32(4):375-381. 被引量:9
  • 2荣薇,陶智,顾济华,赵鹤鸣.基于改进LPCC和MFCC的汉语耳语音识别[J].计算机工程与应用,2007,43(30):213-216. 被引量:17
  • 3Bouzid M.Robust quantization of LPC parameters for speech communication over noisy channel[C]//Proceedings of the 2nd International Conference on the Applications of DigtialInformation and Web Technologies, Aug 2009 : 713-718.
  • 4Zhang X Y, Guo Y L,Hou X M.A speech recognition method of isolated words based on modified LPC ceps- trum[C]//Proceedings of the IEEE International Confer- ence on Granular Computing,Nov 2007:481-485.
  • 5Hosseinzadeh D, Krishnan S.Combining vocal source and MFCC features for enhanced speaker recognition perfor- mance using GMMs[C]//Proceedings of the IEEE 9th Workshop on Multimedia Signal Processing, Oct 2007: 365-368.
  • 6Skowronski M D,Harris J G.Increased MFCC filter band- width for noise-robust phoneme recognition[C]//Proc of IEEE Int'l Conf on Acoustics Speech and Signal Pro- cessing, 2002 : 801-804.
  • 7Ezzaidi H, Rouat J.Pitch and MFCC dependent GMM models for Speaker Identification systems[C]//Proceedings of the Canadian Conference on Electrical and Computer Engineering, May 2004 : 43-44.
  • 8Shannon B J,Paliwal K K.Feature extraction fxom higher- lag autocorrelation coefficients for robust speech recog- nition[J].Speech Communication, 2006,48(1 1):1458-1485.
  • 9Twang Y, Li B, Jiang X Q, et al.Speaker recognition based on dynamic MFCC parameters[C]//Proceedings of the International Conference on Image Analysis and Signal Processing, Aril, 2009 : 406-409.
  • 10Li Ruwei, Bao Changchun, Dou Huijing.Pith detection method for noisy speech signals based on pre-filter and weighted wavelet coefficients[C]//Proc of the 9th Inter- national Conference on Signal Processing, Beijing, China, 2008 : 530-533.

引证文献6

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部