期刊文献+

基于自适应自回归模型的非线性流量负荷预测 被引量:1

The Adaptive Auto Regressive Model for Nonlinear Traffic Load Forecasting
下载PDF
导出
摘要 针对新一代移动数据业务(MMS,KJAV,WAP)具有复杂的非线性特性和不平稳特性,采用鲁棒Kalman滤波算法,提出了一种自适应自回归滑动平均模型(AARMA),并将其应用于移动数据业务负荷预测中。实际预测结果表明,即使是对变动大且不稳定的移动业务流量,自适应ARMA模型稳定,预测精度高,且预测误差的白噪声特性明显。 Through robust Kalman filtering method,an AARMA(Adaptive Auto Regressive Moving Average) model is proposed to forecast the nonlinear and non-stationary data traffic of MMS,KJAVA and WAP of China Mobile.The forecasting results show that the AARMA model need less model parameters and has higher forecasting accuracy,and the forecasting error has the obvious characteristic of white noise.
出处 《科学技术与工程》 2011年第18期4219-4222,共4页 Science Technology and Engineering
基金 广东高校优秀青年创新人才培育项目(LYM10035) 高等学校博士学科点专项科研基金联合资助项目(200805640010) 公益性行业(农业)科研专项经费项目(20090323-06)资助
关键词 自适应回归(模型AARMA) 预测 KALMAN滤波 AARMA forecast Kalman filtering
  • 相关文献

参考文献1

二级参考文献2

共引文献9

同被引文献15

  • 1王志宇,王宏,李一娜,王旭.小波相关分析在脑-计算机接口系统中的研究[J].仪器仪表学报,2006,27(4):358-362. 被引量:2
  • 2何庆华,吴宝明,彭承琳,王禾,钟渝.基于小波和神经网络的视觉诱发电位识别方法[J].仪器仪表学报,2007,28(6):1003-1006. 被引量:10
  • 3LI X,WANG Y R, SONG J L. et al. Research on classifica-tion method of combining support vector machine and geneticalgorithm for motor imagery EEG [J]. J Comput InformSyst, 2011, 7(12): 4351-4358.
  • 4CURRAN E A, STOKES M J. Learning to control brain ac-tivity: a review of the production and control of EEG compo-nents for driving brain-computer interface (BCD systems [J].Brain Cogn, 2003, 51(3):326-336.
  • 5XU Q, ZHOU H, WANG Y J , et al. Fuzzy support vectormachine for classification of EEG signals using wavelet-basedfeatures [J]. Med Eng Phya, 2009,31(7): 858-865.
  • 6DELORME A, MAKEIG S. EEG changes accompanyinglearned regulation of 12-Hz EEG activity [J]. IEKF; TransNeural Syst Rehabil Eng, 2003,11(2) : 133-137.
  • 7KEIRN Z A, AUNON J I. A new mode of communication be-tween man and his surroundings [J]. IEEE Trans BiomedEng, 1990, 37(12): 1209-1214.
  • 8PEI X M, ZHENG C X. Feature extraction and classificationof brain motor imagery task based on MVAR model [C]//Proceedings of the Third International Conference on MachineLearning and Cybernetics. Shanghai : 2004 : 3726-3730.
  • 9HAN M, SUN I> L. EEG signal classification for epilepsy di-agnosis based on AR model and RVM [C]//InternationalConference on Intelligent Control and Information Processing(ICICIP). Dalian: 2010: 134-139.
  • 10INCE N F, GOKSU F, TEWFIK A H, et al. Adapting sub-ject specific motor imagery EEG patterns in space-time-fre-quency for a brain computer interface [J]. Biomed SignalProcess Control, 2009,4(3) : 236-246.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部