期刊文献+

Properties for Certain Subclass of Analytic Functions Involving Carlson-Shaffer Operators 被引量:2

Properties for Certain Subclass of Analytic Functions Involving Carlson-Shaffer Operators
下载PDF
导出
摘要 Let Hn(p)be the class of functions of the form f(z)=z p+ +∞Σ k=n akzk+p,which are analytic in the open unit disk U={z:|z|<1}.In the paper,we introduce a new subclass Bn(μ,a,c,α,p;φ)of Hn(p)and investigate its subordination relations,inclusion relations and distortion theorems.The results obtained include the related results of some authors as their special case. Let Hn(p)be the class of functions of the form f(z)=z p+ +∞ Σ k=n akzk+p,which are analytic in the open unit disk U={z:|z|1}.In the paper,we introduce a new subclass Bn(μ,a,c,α,p;φ)of Hn(p)and investigate its subordination relations,inclusion relations and distortion theorems.The results obtained include the related results of some authors as their special case.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2011年第2期245-250,共6页 数学季刊(英文版)
基金 Supported by the Doctoral Foundation of the Education Committee of China(20050574002)
关键词 analytic functions subordination hadamard product integral operators Carlson-Shaffer operators analytic functions subordination hadamard product integral operators Carlson-Shaffer operators
  • 相关文献

参考文献8

  • 1CARLSON B C, SHAFFER D B. Starlike and prestarlike hypergeometric functions[J]. SIAM J Math Anal, 1984, 15(4): 737-745.
  • 2RUSCHEWEHY S. New criteria for univalent functions[J]. Proc Amer Math Soc, 1975, 49: 109-115.
  • 3LIU Ming-sheng. On the univalency for certain subclass of analytic functions involving Ruscheweyh derivatives[J]. Internat J Math Math Sci, 2002, 31(9): 567-576.
  • 4LIU Ming-sheng. On certain sufficient condition for starlike functions[J]. Soochow J Math, 2003, 29: 407-412.
  • 5LIU Ming-sheng. On certain subclass of p-valent functions[J]. Soochow J Math, 2000, 26: 163-171.
  • 6LIU Ming-sheng. Properties for some subclasses of analytic functions[J]. Bulletin of the Institute of Math Academia Sinica, 2002, 30(1): 9-26.
  • 7MILLER S S, MOCANU P T. Differential Subordination and univalent functions[J]. Michigan Math J, 1981, 28: 157-171.
  • 8ROGOSINSKI W W. On the coefficients of subordinate functions[J]. Proc London Math Soc, 1943, 48 48-82.

同被引文献2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部