期刊文献+

基于负熵最大化的机械振源半盲分离方法 被引量:7

Semi-blind sources separation of mechanical vibrations base on maximization of negentropy
下载PDF
导出
摘要 为了快速、有效地分离传感器观测信号中的机械振源信号,提出一种负熵最大化的机械振源半盲分离方法.该方法根据目标振源的振动特性构造相应的参考源信号,将参考源信号和分离的目标振源信号的均方误差作为约束条件引入到盲源分离的对照函数中,通过求解约束最优问题,实现目标机械振源信号的分离.试验结果表明,基于负熵最大化的半盲分离方法能快速、有效地分离出目标振源信号,为机械振动信号的监测与故障诊断提供一种新的方法和思路. In order to separate mechanical vibration sources form sensor signals rapidly and effectively, a novel method was proposed, which was based on maximization of negentropy for semi-blind sources separation of mechanical vibrations. The reference signals that carry some information of sources were constructed. The mean square error between reference signals and separated sources was incorporated into contrast function as the constraints. The interested mechanical vibration source was obtained by solving the constrained optimization problem. The proposed method was compared with the conventional BSS method, and the experiment results showed that the proposed method is very effective. It is possible to apply the new method to vibration signals analysis and mechanical fault diagnosis.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第5期846-850,共5页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50675194) 国家"863"高技术研究发展计划资助项目(2008AA04Z410) 国家科技重大专项资助项目(2009ZX04014-101-01)
关键词 盲源分离 参考源信号 机械振源 半盲分离 独立分量分析 blind sources separation reference sources mechanical vibrations semi-blind sources separation independent component analysis
  • 相关文献

参考文献12

  • 1李舜酩.机械振动信号盲源分离的时域方法[J].应用力学学报,2005,22(4):579-584. 被引量:19
  • 2叶红仙,杨世锡,杨将新.多振源卷积混合的时域盲源分离算法[J].机械工程学报,2009,45(1):189-194. 被引量:11
  • 3孙晖,朱善安.调制故障源信号盲分离的经验模态分解法[J].浙江大学学报(工学版),2006,40(2):258-261. 被引量:12
  • 4YPMA A. Learning methods for machine vibration anal ysis and health monitoring [D]. Delft: Delft University of Technology, 2001.
  • 5LIU X, RANDALL R B, ANTONI J. Blind separation of internal combustion engine vibration signals by a de flation method [J]. Mechanical Systems and Signal Proeesslng, 2008, 22(5): 1082-1091.
  • 6GELLE G, COLAS M, SERVIERE C. Blind source separation: a tool for rotating machine monitoring by vi brations analysis [J]. Journal of Sound and Vibration, 2001, 248(5): 865-885.
  • 7胥永刚,张发启,何正嘉.独立分量分析及其在故障诊断中的应用[J].振动与冲击,2004,23(2):104-107. 被引量:46
  • 8ANTONI J. Blind separation of vibration components: principles and demonstrations [J]. Mechanical Systems and Signal Processing, 2005, 19(6): 1166-1180,.
  • 9WEI L, RAJAPAKSE J C. Approach and applications of constrained ICA [J]. IEEE Transactions on Neural Networks, 2005, 16(1) : 203-212.
  • 10LU W, RAJAPAKSE J C. Ica with reference [J]. Neurocomputing, 2006, 69(16/18): 2244-2257.

二级参考文献38

  • 1杨世锡,胡劲松,吴昭同,严拱标.基于高次样条插值的经验模态分解方法研究[J].浙江大学学报(工学版),2004,38(3):267-270. 被引量:16
  • 2张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 3焦卫东,杨世锡,吴昭同.机械故障模式识别的ICA基神经网络方法[J].农业机械学报,2004,35(4):151-154. 被引量:3
  • 4李舜酩.机械振动信号盲源分离的时域方法[J].应用力学学报,2005,22(4):579-584. 被引量:19
  • 5胥永刚,李强,王正英,王太勇.基于独立分量分析的机械故障信息提取[J].天津大学学报,2006,39(9):1066-1071. 被引量:21
  • 6YPMA A. Learning methods for machine vibration analysis and health monitoring[D]. Netherlands: Delft University of Technology, 1998.
  • 7GELLE G, COLAS M. Blind source separation: A tool for rotating machine monitoring by vibration analysis [J]. Sound and Vibration, 2001, 248(5): 865-885.
  • 8GELLE G, COLAS M, CHRISTINE S. Blind source separation: A new pre-processing tool for rotating machines monitoring[J]. IEEE Transactions on Instrumentation and Measurement, 2003, 52(3): 790-795.
  • 9GELLE G, COLAS M, DELAUNAY G. Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis[J]. Mechanical Systems and Signal Processing, 2000, 14(3): 427-442.
  • 10ROAN M J, ERLING J G, SIBUL L H. A new, non-linear adaptive, blind source separation approach to gear tooth failure detection and analysis[J]. Mechanical Systems and Signal Processing, 2002, 16(5): 719-740.

共引文献82

同被引文献121

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部