期刊文献+

热化学硫碘开路循环制氢系统的设计与模拟 被引量:2

Process design and simulation of open-loop sulfur-iodine thermo-chemical cycle for hydrogen production
下载PDF
导出
摘要 为了对热化学硫碘开路循环制氢系统进行优化设计及热效率评估,利用大型化工流程模拟软件AspenPlus对硫碘开路循环联产氢气和硫酸系统进行设计和模拟,计算质量、能量平衡及热效率.在考虑泵功和废热回收的情况下,开路系统的最高计算热效率达到66.2%.其次,利用灵敏度分析,分别考察HI精馏塔回流比、精馏塔压力、HI相循环量、HI分解率和产品硫酸质量分数5个设计参数对系统效率的影响.结果显示,HI相循环量和精馏塔回流比是影响系统效率的主要因素,其他参数对效率影响较小.通过优化本生反应操作条件可显著减少HI相的循环量,提高系统效率.计算结果与文献参考值接近,为今后大规模硫碘循环制氢系统的设计及优化提供参考. In order to optimize the process and thermal efficiency of the open-loop sulfur-iodine (SI) ther- too-chemical cycle for production of hydrogen, a flowsheet of open-loop SI thermo-chemical cycle was designed and simulated by Aspen Plus. The heat and mass balance as well as thermal efficiency were first calculated. The maximum thermal efficiency of the process was 66.2% considering waste heat recovery and pumping power. Secondly, through sensitivity analysis, the effects of 5 operating parameters like. reflux ratio at HI distillation column, pressure in HI distillation column, flow rate of HI phase, conversion ratio of HI and mass fraction of H2 SO4 were evaluated to the thermal efficiency. Results show that the flow rate of HI phase and reflux ratio of the HI distillation column are the primary paramenters influence the total efficiency, while the other parameters are not so obviously. Through optimization of the Bunsen reactor operation condition, the flow rate of the HI phase can be reduced therefore improve the whole thermal efficiency. The simulation results agree well with published datas and can be used as reference for design and optimization of the large scale SI thermo-chemical cycle H2 production system.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第5期869-877,共9页 Journal of Zhejiang University:Engineering Science
基金 浙江省自然科学基金资助项目(Y106538) 国家"863"高技术研究发展计划资助项目(2008AA05Z103)
关键词 制氢 热化学循环 硫碘 热效率 灵敏度分析 hydrogen production thermo-chemieal cycle sulfur-iodine thermal efficiency sensitivity analysis
  • 相关文献

参考文献14

  • 1周俊虎,谢琳,程军,谢斌飞,戚峰,岑可法.富含三类大分子有机质的废弃食物发酵产氢特性[J].浙江大学学报(工学版),2006,40(11):2007-2010. 被引量:9
  • 2NORMAN J H, BESENBRUCH G E , O'KEEFE D. Thermochemical water-splitting for hydrogen production [R]. GRI-80/0105, Washington DC: Gas Research Institute, 1981.
  • 3SAKURAI M,NAKAJIMA H,ONUKI K,et al. Investigation of 2 liquid phase separation characteristics on the iodine-sullur therrnochemical hydrogen production process [J]. Int. J. Hydrogen Energy, 2000, 25(7): 605-611.
  • 4GIACONIA A, CAPUTO G, CEROLI A, et al. Experimental study of two phase separation in the Bunsen section of the sulfur-iodine thermochemical cycle [J]. Int. J. Hydrogen Energy, 2007, 32(5) : 531-536.
  • 5SONIA C, NADIA B, MICHEL T, et al. Study of the miscibility gap in H2SO4/HI/I2/H20 mixtures produced by the Bunsen reaction-Part I: Preliminary results at 308K [J]. Int. J. Hydrogen Energy, 2009, 34 (17):7155 -7161.
  • 6CHUPING H, RAISSI T A. Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part I: decomposition of sulfuric acid [J]. Solar Energy, 2005, 78(5): 632-646.
  • 7CHEIKHOU K, SHRIPAD T, REVANKAR. Sulfur-iodine thermochemical cycle: HI decomposition flow sheet analysis [J]. Int. J. Hydrogen Energy, 2008, 33 (21) : 5996-6005.
  • 8WON C C, CHU S P, KYOUNG S K, et al. Conceptual design of sulfur-iodine hydrogen production cycle of Korea Institute of Energy Research [J]. Nuclear Engineering and Design, 2009, 239(3): 501-507.
  • 9MAKOTO S, HAYATO N, RUSLI A,et al. Experimental study on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process [J]. Int. J. Hydrogen Energy, 2000, 25(7): 613-619.
  • 10KNOCHE K F, SCHEPER H, HESSELMANN K. Second law and cost analysis of the oxygen generation step of the General Atomic sulfur-iodine cycle [C]// Proceedings of the 5th World Hydrogen energy conference. Toronto: Pergamon Press, 1984:487-502.

二级参考文献12

  • 1LAY J J,LEE Y J,NOIKE T.Feasibility of biological hydrogen production from organic fraction of municipal solid waste[J].Water Research,1999,33(11):2579-2586.
  • 2OKAMOTO M,MIYAHARA T,MIZUNO O,et al.Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes[J].Water Science and Technology,2000,41(3):25-32.
  • 3NIELSEN A T,AMANDUSSON H,BJORLUND R,et al.Hydrogen production from organic waste[J].International Journal of Hydrogen Energy,2001,26(6):547-550.
  • 4LAY J J,FAN K S,CHANG J L,et al.Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge[J].International Journal of Hydrogen Energy,2003,28(12):1361-1367.
  • 5HAN S K,SHIN H S.Biohydrogen production by anaerobic fermentation of food waste[J].International Journal of Hydrogen Energy,2004,29(6):569-577.
  • 6任南琪,李建政,林明,王勇.产酸发酵细菌产氢机理探讨[J].太阳能学报,2002,23(1):124-128. 被引量:39
  • 7李建政,任南琪,林明,王勇.有机废水发酵法生物制氢中试研究[J].太阳能学报,2002,23(2):252-256. 被引量:66
  • 8王勇,任南琪,孙寓姣,李建政,孙选文.乙醇型发酵与丁酸型发酵产氢机理及能力分析[J].太阳能学报,2002,23(3):366-373. 被引量:42
  • 9任南琪,李建政.生物制氢技术[J].太阳能,2003(2):4-6. 被引量:28
  • 10卢怡,张无敌,宋洪川,李建昌,夏朝凤.猪粪发酵产氢潜力的研究[J].可再生能源,2003,21(2):11-13. 被引量:10

共引文献8

同被引文献4

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部