期刊文献+

Threshold control in VCSELs by proton implanted depth 被引量:1

Threshold control in VCSELs by proton implanted depth
原文传递
导出
摘要 The proton implantation is one of key procedures to confine the current diffusion in vertical cavity surface emitting lasers(VCSELs),in which the proton implanted depth and profile are main parameters.Threshold characteristics of VCSELs with various proton implanted depths are studied after optical,electrical and thermal fields have been simulated self-consistently in three dimensions.It is found that for VCSELs with confinement radius of 2 mm,increasing proton implanted depth can reduce the injected current threshold power and enhance the laser temperature in active region.Numerical results also indicate that there are optimal values for current aperture in proton implanted VCSELs.The minimum injected current threshold can be achieved in VCSELs with proton implantation near the active region and confinement radius of 1.5 mm,while the VCSELs with proton implantation in the middle of p-type distributed Bragg reflectors(DBRs) and confinement radius of 2.5 mm can realize the minimum temperature. The proton implantation is one of key procedures to confine the current diffusion in vertical cavity surface emitting lasers(VCSELs),in which the proton implanted depth and profile are main parameters.Threshold characteristics of VCSELs with various proton implanted depths are studied after optical,electrical and thermal fields have been simulated self-consistently in three dimensions.It is found that for VCSELs with confinement radius of 2 mm,increasing proton implanted depth can reduce the injected current threshold power and enhance the laser temperature in active region.Numerical results also indicate that there are optimal values for current aperture in proton implanted VCSELs.The minimum injected current threshold can be achieved in VCSELs with proton implantation near the active region and confinement radius of 1.5 mm,while the VCSELs with proton implantation in the middle of p-type distributed Bragg reflectors(DBRs) and confinement radius of 2.5 mm can realize the minimum temperature.
出处 《Optoelectronics Letters》 EI 2011年第4期263-265,共3页 光电子快报(英文版)
基金 supported by the Natural Science Foundation of Hebei Province (No.F2007000096) the Research Foundation for the Doctoral Program of Higher Education of China (No.20070080001)
  • 相关文献

参考文献13

  • 1M. Ortsiefer, M. Garblich, Y. Xu, E. R6nneberg, J. Rosskopf, R. Shau and M. C. Amann, IEEE Photonics Technology Letters 22, 15 (2010).
  • 2HU Yong-sheng, YE Shu-juan, WANG Zhen-fu, QIN Li and NING Yong-qiang, Optoelectronics Letters 6,421 (2010).
  • 3Jianjun Gao, Journal of Lightwave Technology 28, 1332 (2010).
  • 4G. Verschaffelt, G. Craggs, M. L. F. Peeters, S. K. Mandre, H. Thienpont and I. Fischer, IEEE Journal of Quantum Electronics 45, 249 (2009).
  • 5P. O. Leisher, A. J. Danner, J. J. Raftery Jr, D. Siriani and K. D. Choquette, IEEE Journal of Quantum Electronics 42, 1091 (2006).
  • 6R. Safaisini, J. R. Joseph and K. L. Lear, IEEE Journal of Quantum Electronics 46, 1590 (2010).
  • 7SHI Jing-jing, TIAN Zhen-hua, QIN Li, ZHANG Yan, WANG Zhen-fu, LIANG Xue-mei, YANG Ye, NING Yong-qiang, LIU Yun and WANG Li-jun, Journal of Optoelectronics ·Laser 21, 1446 (2010). (in Chinese).
  • 8P. Debemardi, IEEE Journal of Quantum Electronics 45, 979 (2009).
  • 9A. A. Dyomin, V. V. Lysak, S. 1.Petrov, Y. T. Lee and I. A. Sukhoivanov, Optics and Lasers in Engineering 46, 211 (2008).
  • 10L. Piskorski, R. P. Sarza and W. Nakwaski, Microeleetronics Journal 39, 638 (2008).

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部