摘要
基于Lagrange 乘子理论,根据移动机器人自主行走的具体要求,提出完成轨迹跟踪、到达目标和避障的优化模型,实现了控制与规划的一体化。利用Lyapunov 稳定理论证明了系统的稳定性,讨论了Lagrange 乘子对系统响应的影响。
Based on Lagrange multiplier theory, an optimized model of a mobile robot for trajectory tracking, goal seeking and obstacle avoiding to meet the requirements of a mobile robot′s motion was presented. This unified path planning and control. The stability of the system was proved via Lyapunov function. Furthermore, the effects of Lagrange multiplier on the system response were discussed. Simulation results show that trajectory tracking and local path planning can be achieved simultaneously.
出处
《控制与决策》
EI
CSCD
北大核心
1999年第A11期545-548,624,共5页
Control and Decision
基金
国家自然科学基金
上海市自然科学基金
关键词
移动机器人
LAGRANGE乘子
轨迹跟踪
局部规划
Lagrange multiplier theory, unification of control and path planning, optimized model, Lyapunov function, virtual obstacles