期刊文献+

一种采用线性递减步长的自组织迁移算法 被引量:1

Modified self-organizing migrating algorithm with linear-digress step
下载PDF
导出
摘要 自组织迁移算法(SOMA)是一种新型的群体智能算法。在对原始自组织迁移算法分析的基础上,针对基于随机变异步长的自组织迁移算法存在的不足,提出了线性递减步长策略,即有针对性地以线性方式动态调整步长,以满足群体迭代在不同阶段的需求,从而加速群体在多峰复杂空间中收敛速度的同时提高算法的局部搜索能力。实验结果表明,该算法优于原始自组织迁移算法和基于随机变异步长的自组织迁移算法。 Self-Organizing Migrating Algorithm(SOMA) is a kind of new swarm intelligent algorithm.After analyzing the basic self-organizing migrating algorithm and modified self-organizing migrating algorithm with random mutation step,this paper proposes a improved self-organizing migrating algorithm with linear-digress step.The algorithm accelerates the convergence ratio of swarm in multi-modal complex space and enhances the ability of local search by adjusting step length dynamic and linear under some directions.Experiments reveal that the proposed algorithm behaves better than the self-organizing migrating algorithm with random mutation step and the basic one.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第18期26-28,111,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60773009) 国家高技术研究发展计划(863)(No.2007AA01Z290)~~
关键词 自组织迁移算法 步长 线性递减 优化 self-organizing migrating algorithm step linear digress optimization
  • 相关文献

参考文献10

  • 1Ivan Z, Jouni L.SOMA-self-organizing migrating algorithm mendel[C]//Proceedings of the 6th International Conference on Soft Computing, Bmo, Czech Republic, 2000.
  • 2林志毅,李元香,王玲玲.基于混合迁移行为的自组织迁移算法[J].计算机科学,2008,35(12):175-177. 被引量:6
  • 3柯晶,李歧强,乔谊正.采用随机变异步长的改进自组织迁移算法[J].计算机工程与应用,2006,42(35):41-44. 被引量:4
  • 4李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 5Shi Y,Eberhart R C.A modified particle swarm optimizer[C]// Proceedings of IEEE International Conference of Evolutionary Computation,Anchorage,Alaska,May 1998.
  • 6Parsopoulos K E,Plagianakos V P, Magoulas G D.Improving par- ticle swarm optimizer by function "stretching"[M]//Hadjisawas N, Pardalos P.Advances in Convex Analysis and Global Optimiza- tion.The Netherlands:Kluwer Academic Publishers,2001:445-457.
  • 7Cervenka M,Ivan Z.ParaUel computation for SOMA[C]//gs of the 19th European Conference on Modeling and Simulation, Riga, Latvia, 2005.
  • 8Zelinka I.SOMA-self-organizing migrating algorithm[M]//New Optimization Techniques in Engineering.Berlin: Springer, 2004: 167-217.
  • 9Oplat kov~Z, Zelinka I.Investigation on Shannon-Kotelnik theorem impact on soma algorithm performance[C]//Proceedings of 19th European Conference on Modeling and Simulation,2005.
  • 10Nollea L,Zelinkab I,Hopgooda A A, et al.Comparison of a self-organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning[J].Advanees in Engineering Soitware, 2005,36 : 645-653.

二级参考文献23

  • 1柯晶,李歧强,乔谊正.采用随机变异步长的改进自组织迁移算法[J].计算机工程与应用,2006,42(35):41-44. 被引量:4
  • 2Ivan Z,Jouni L. SOMA-Self-Organizing Migrating Algorithmff Mendel, 6th International Conference on Soft Computing. Brno, Czech Republic, 2000
  • 3Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans on Evolutionary Computation, 2002,6 (1) : 58-73
  • 4Dorigo M, Maniezzo V, Colorni A. Ant system:optimization by a colony of cooperating agents. IEEE Transaction on Systems. Man and Cybernetics-PartB, 1996,26 (1) : 29-41
  • 5Cervenka M, Ivan Z. Parallel computation for SOMA[R]//Proceeding 19^th European Conference on Modeling and Simulation. Riga, Latvia, 2005
  • 6Zelinka I. SOMA-Self-organizing migrating algorithm[M]. New Optimization Techniques in Engineering. Berlin: Springer, 2004: 167-217
  • 7Oplatkova Z, Zelinka I. Investigation On Shannon-Kotelnik Theorem Impaet On Soma Algorithm Performance [A] // Proceedings 19th European Conference on Modelling and Simulation. Yuri Merkuryev, Richard zobel, Eugene Kerekhoffs. ECMS [c],2oo5
  • 8Eberhart R C, Shi Y H. Evolving Artificial Neural Networks[R]//Proceedings of Int'l Conference on Neural Networks and Brain. Beijing, 1998
  • 9Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of Int'l Conf on Neural Networks [C]. Piscataway: IEEE Press, 1995. 1942-1948.
  • 10Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of Int'l Symposium on Micro Machine and Human Science [C]. Piscataway: IEEE Service Center, 1995. 39-43.

共引文献403

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部