期刊文献+

基于Q学习Robocup前锋的射门训练

Robocup vanguard’s goal-scoring ability based on Q-learning
下载PDF
导出
摘要 3D仿真机器人是当今人工智能领域里一个极富挑战性的高技术密集型项目。在Robocup 3D比赛中,由于现今球队的人数较少,一个球队的进攻能力往往取决于前锋的个人能力,因此增强前锋的射门能力就显得十分重要。Q学习是一种重要的强化学习方法,将Q学习用到Robocup仿真环境中,使智能体通过在线学习获得射门技巧,并且通过实际比赛证明了算法的有效性。 3D simulation of robot soccer is one of the modern challenging high-tech-intensive projects in artificial intelligence field.Due to the small number of players in one team in the competition,the offensive capability of a team often depends on the vanguard ’s personal abilities,and it is extremely necessary to enhance ability of vanguard’s shot ability.Q-learning is an important method of reinforcement learning.This paper uses Q-learning in simulation environment,so that agent can learn shot skills through the online learning,and it has proved the effectiveness of the algorithm through the actual game.
作者 申迅 刘国栋
出处 《计算机工程与应用》 CSCD 北大核心 2011年第18期53-55,共3页 Computer Engineering and Applications
关键词 ROBOCUP Q学习 智能体 射门 Robocup Q-learning Agent shot
  • 相关文献

参考文献7

二级参考文献13

  • 1Stone P. Layered learning in Multi - Agent System[D]. Pittsburgh: Computer Science Department, Carnegie Mellon University, 1998.
  • 2Mihal B, Kay S, Jan W. Learning of kick in artificial soccer [ C]///Robot Soccer World Cup IV. Berlin: [ s. n. ], 2000.
  • 3Kaelbling LP, Littrnan M L, Moore A W. Reinforcement learning:A survey[J]. Journal of Artificial Intelliegence, 1996, 4:237 - 285.
  • 4Sutton R S, Barto A G. Reinforcement Learning[M]. Cambridge, MA: The MIT Press, 1998.
  • 5[4]Kostiadis Kostas,Hu Huosheng.Reinforcement Learning and Co-operation in a Simulated Multi-agent System[A].In:Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems 1999[C],17-21 Oct.1999,2:990-995.
  • 6[6]Piao Songhao,Hong Bingrong.Fast Reinforcement Learning Approach to Cooperative Behavior Acquisition in Multi-agent System[A].In:Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems[C],30 Sept.-5 Oct.2002,1:871-875.
  • 7丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科技大学出版社,2003..
  • 8叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..
  • 9Stone P. Layered learning in Multi- Agent System [ D]. Pittsburgh, PA: Computer Science Department, Carnegie Mellon University, 1998.
  • 10Kaelbling L P, Lit-reran M L,Moore A W. Reinforcement learning:A survey[J]. Journal of Artificial Intelligenee, 1996,4: 237 - 285.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部